BackgroundAfter being eliminated during the 1950s, dengue reemerged in Brazil in the 1980s. Since then, incidence of the disease has increased, as serotypes move within and between cities. The co-circulation of multiple serotypes contributes to cycles of epidemic and interepidemic years, and a seasonal pattern of transmission is observed annually. Little is known regarding possible differences in the epidemiology of dengue under epidemic and interepidemic scenarios. This study addresses this gap and aims to assess the epidemiological characteristics and determinants of epidemic and interepidemic dengue transmission, utilizing data from the 5th largest city in Brazil (Fortaleza), at fine spatial and temporal scales.Methods/Principal findingsLongitudinal models of monthly rates of confirmed dengue cases were used to estimate the differential contribution of contextual factors to dengue transmission in Fortaleza between 2011 and 2015. Models were stratified by annual climatological schedules and periods of interepidemic and epidemic transmission, controlling for social, economic, structural, entomological, and environmental factors. Results revealed distinct seasonal patterns between interepidemic and epidemic years, with persistent transmission after June in interepidemic years. Dengue was strongly associated with violence across strata, and with poverty and irregular garbage collection during periods of low transmission, but not with other indicators of public service provision or structural deprivation. Scrapyards and sites associated with tire storage were linked to incidence differentially between seasons, with the strongest associations during transitional precipitation periods. Hierarchical clustering analysis suggests that the dengue burden concentrates in the southern periphery of the city, particularly during periods of minimal transmission.Conclusions/SignificanceOur findings have direct programmatic implications. Vector control operations must be sustained after June even in non-epidemic years. More specifically, scrapyards and sites associated with tires (strongly associated with incidence during periods of minimal transmission), require sustained entomological surveillance, particularly during interepidemic intervals and in the urban periphery. Intersectoral collaborations that address urban violence are critical for facilitating the regular activities of vector control agents.
BackgroundTuberculosis (TB) remains a public health problem, despite recent achievements in reducing incidence and mortality rates. In Brazil, these achievements were above the worldwide average, but marked by large regional heterogeneities. In Fortaleza (5th largest city in Brazil), the tuberculosis cure rate has been declining and treatment abandonment has been increasing in the past decade, despite a reduction in incidence and an increase in directly observed therapy (DOT). These trends put efforts to eliminate tuberculosis at risk. We therefore sought to determine social and programmatic determinants of tuberculosis incidence and treatment abandonment in Fortaleza.MethodsWe analyzed sociodemographic and clinical data for all new tuberculosis cases notified in the Notifiable Diseases Information System (SINAN) from Fortaleza between 2007 and 2014. We calculated incidence rates for 117 neighborhoods in Fortaleza, assessed their spatial clustering, and used spatial regression models to quantify associations between neighborhood-level covariates and incidence rates. We used hierarchical logistic regression models to evaluate how individual- and neighborhood-level covariates predicted tuberculosis treatment abandonment.ResultsThere were 12,338 new cases reported during the study period. Case rates across neighborhoods were significantly positively clustered in two low-income areas close to the city center. In an adjusted model, tuberculosis rates were significantly higher in neighborhoods with lower literacy, higher sewerage access and homicide rates, and a greater proportion of self-reported black residents. Treatment was abandoned in 1901 cases (15.4%), a rate that rose by 71% between 2007 and 2014. Abandonment was significantly associated with many individual sociodemographic and clinical factors. Notably, being recommended for DOT was protective for those who completed DOT, but associated with abandonment for those who did not.ConclusionLow socioeconomic status areas have higher tuberculosis rates, and low socioeconomic individuals have higher risk of treatment abandonment, in Fortaleza. Treatment abandonment rates are growing despite the advent of universal DOT recommendations in Brazil. Proactive social policies, and active contact tracing to find missed cases, may help reduce the tuberculosis burden in this setting.Electronic supplementary materialThe online version of this article (doi:10.1186/s12889-017-4435-0) contains supplementary material, which is available to authorized users.
Dengue is a vector-borne disease transmitted by the Aedes genus mosquito. It causes financial burdens on public health systems and considerable morbidity and mortality. Tropical regions in the Americas and Asia are the areas most affected by the virus. Fortaleza is a city with approximately 2.6 million inhabitants in northeastern Brazil that, during the recent decades, has been suffering from endemic dengue transmission, interspersed with larger epidemics. The objective of this paper is to study the impact of human mobility in urban areas on the spread of the dengue virus, and to test whether human mobility data can be used to improve predictions of dengue virus transmission at the neighbourhood level. We present two distinct forecasting systems for dengue transmission in Fortaleza: the first using artificial neural network methods and the second developed using a mechanistic model of disease transmission. We then present enhanced versions of the two forecasting systems that incorporate bus transportation data cataloguing movement among 119 neighbourhoods in Fortaleza. Each forecasting system was used to perform retrospective forecasts for historical dengue outbreaks from 2007 to 2015. Results show that both artificial neural networks and mechanistic models can accurately forecast dengue cases, and that the inclusion of human mobility data substantially improves the performance of both forecasting systems. While the mechanistic models perform better in capturing seasons with large-scale outbreaks, the neural networks more accurately forecast outbreak peak timing, peak intensity and annual dengue time series. These results have two practical implications: they support the creation of public policies from the use of the models created here to combat the disease and help to understand the impact of urban mobility on the epidemic in large cities.
Introduction: Chikungunya causes fever and severe and persistent joint pain. Methods: We reported a chikungunya outbreak that occurred in Ceará State, Brazil between 2016 and 2017 with emphasis on epidemiological characterization of cases, high number of deaths, mortality-associated factors, and spatial and temporal spread of the epidemic among municipalities. Results: In November 2015, the first autochthonous cases of chikungunya were confirmed in Ceará, Brazil. In 2016-2017, 195,993 cases were reported, with an incidence of 2,186.5/100,000 inhabitants and 244 confirmed deaths. Conclusions: Rapid transmission and high mortality rate are serious problems, especially in regions with co-circulating arboviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.