The DARE platform enables researchers and their developers to exploit more capabilities to handle complexity and scale in data, computation and collaboration. Today's challenges pose increasing and urgent demands for this combination of capabilities. To meet technical, economic and governance constraints, application communities must use use shared digital infrastructure principally via virtualisation and mapping. This requires precise abstractions that retain their meaning while their implementations and infrastructures change. Giving specialists direct control over these capabilities with detail relevant to each discipline is necessary for adoption. Research agility, improved power and retained return on intellectual investment incentivise that adoption. We report on an architecture for establishing and sustaining the necessary optimised mappings and early evaluations of its feasibility with two application communities.
Deep learning models, while effective and versatile, are becoming increasingly complex, often including multiple overlapping networks of arbitrary depths, multiple objectives and non-intuitive training methodologies. This makes it increasingly difficult for researchers and practitioners to design, train and understand them. In this paper we present ANNETT-O, a much-needed, generic and computer-actionable vocabulary for researchers and practitioners to describe their deep learning configurations, training procedures and experiments. The proposed ontology focuses on topological, training and evaluation aspects of complex deep neural configurations, while keeping peripheral entities more succinct. Knowledge bases implementing ANNETT-O can support a wide variety of queries, providing relevant insights to users. In addition to a detailed description of the ontology, we demonstrate its suitability to the task via a number of hypothetical use-cases of increasing complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.