Quantitative MRI (qMRI) methods allow reducing the subjectivity of clinical MRI by providing numerical values on which diagnostic assessment or predictions of tissue properties can be based. However, qMRI measurements typically take more time than anatomical imaging due to requiring multiple measurements with varying contrasts for, e.g., relaxation time mapping. To reduce the scanning time, undersampled data may be combined with compressed sensing (CS) reconstruction techniques. Typical CS reconstructions first reconstruct a complex-valued set of images corresponding to the varying contrasts, followed by a non-linear signal model fit to obtain the parameter maps. We propose a direct, embedded reconstruction method for T1ρ mapping. The proposed method capitalizes on a known signal model to directly reconstruct the desired parameter map using a non-linear optimization model. The proposed reconstruction method also allows directly regularizing the parameter map of interest and greatly reduces the number of unknowns in the reconstruction, which are key factors in the performance of the reconstruction method. We test the proposed model using simulated radially sampled data from a 2D phantom and 2D cartesian ex vivo measurements of a mouse kidney specimen. We compare the embedded reconstruction model to two CS reconstruction models and in the cartesian test case also the direct inverse fast Fourier transform. The T1ρ RMSE of the embedded reconstructions was reduced by 37–76% compared to the CS reconstructions when using undersampled simulated data with the reduction growing with larger acceleration factors. The proposed, embedded model outperformed the reference methods on the experimental test case as well, especially providing robustness with higher acceleration factors.
Knowledge of the relative performance of the well-known sparse and low-rank compressed sensing models with 3D radial quantitative magnetic resonance imaging acquisitions is limited. We use 3D radial T1 relaxation time mapping data to compare the total variation, low-rank, and Huber penalty function approaches to regularization to provide insights into the relative performance of these image reconstruction models. Simulation and ex vivo specimen data were used to determine the best compressed sensing model as measured by normalized root mean squared error and structural similarity index. The large-scale compressed sensing models were solved by combining a GPU implementation of a preconditioned primal-dual proximal splitting algorithm to provide high-quality T1 maps within a feasible computation time. The model combining spatial total variation and locally low-rank regularization yielded the best performance, followed closely by the model combining spatial and contrast dimension total variation. Computation times ranged from 2 to 113 min, with the low-rank approaches taking the most time. The differences between the compressed sensing models are not necessarily large, but the overall performance is heavily dependent on the imaged object.
Increasing availability and affordability of 3-D printers utilizing fused deposition modeling (FDM) have enabled their widespread use especially in pre-clinical MRI, allowing in-house design and manufacturing of elaborate coil housings, animal holders, sample holders, etc. Here, we investigated ten common and broadly available FDM polymers for their MRI-visibility at 9.4T. We utilized ultra-short echo time imaging sequences, specifically, single-point-imaging (SPI) and multi-band SWIFT to measure the relaxation properties of the different polymers. The findings support the selection of appropriate printing materials when either visibility or invisibility for ultra-short echo time imaging is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.