Poly L-lactic acid (PLLA) is a non-toxic, biocompatible degradable polymer material with excellent mechanical properties after molding. However, it faces challenges in the use of biomedical materials because of its intolerance to bacteria. Here, we use an easy-to-operate method to prepare a composite multilayer membrane: PLLA membrane was used as substrates to assemble positively charged chitosan and negatively charged Ag@MXene on the surface using the Layer-by-layer (LBL) method. The assembly process was detected by Fluorescein Isothiocyanate (FITC)-labelled chitosan and the thickness of the coating multilayer was also detected as 210.0 ± 12.1 nm for P-M membrane and 460.5 ± 26.5 nm for P-Ag@M membrane. The surface self-assembled multilayers exhibited 91.27% and 96.11% growth inhibition ratio against E. coli and S. aureus strains under 808 nm near-infrared (NIR) laser radiation with a synergistic photothermal antibacterial effect. Furthermore, best biocompatibility of P-M and P-Ag@M membranes compare to PLLA membrane motivated us to further explore its application in biomedical materials
Patients with metastatic rhabdomyosarcoma (RMS) have a poor prognosis. The detection of contaminating RMS cells in the bone marrow (BM) is important in clinical staging and risk assessment. The cytological examination of the BM remains the gold standard for the diagnosis of RMS, but has a limited sensitivity. In the present study, 32 BM and two cerebrospinal fluid (CSF) samples from 11 patients with suspected metastasis were analyzed by flow cytometry (FCM) with ganglioside D2 (GD2) conjugated with fluorescein isothiocyanate, cluster of differentiation (CD)90-phycoerythrin, CD45-peridinin chlorophyll protein and CD56-allophycocyanin monoclonal antibody cocktail in parallel to morphological examination at diagnosis or during treatment. Five samples (14.7%) were positive for RMS onup morphological examination. By FCM, 16 samples (47.1%) were positive for RMS. A significant difference was identified between the two methods. The four-color FCM assay successfully detected RMS cells in BM samples to a level of 0.01% (1 per 104 cells). RMS cells demonstrated a phenotype with CD56+/CD90+/CD45−/GD2− expression, which is different from the CD56+/CD90+/CD45−/GD2+ expression phenotype in neuroblastoma cells. The follow-up of four patients by FCM demonstrated that two patients became minimal residual disease-negative following two and four cycles of chemotherapy, respectively, and survived. The other two cases remained FCM-positive despite receiving four courses of chemotherapy and consequently succumbed to progressive disease. In addition, FCM analysis of the CSF samples from one patient confirmed a diagnosis of CSF metastasis with RMS. In conclusion, FCM may have a role not only in staging and monitoring the effects of therapy, but also in providing diagnostic confirmation of CSF metastasis with RMS.
Nonleukemic myeloid sarcoma (MS) is a rare tumor that can occur in several locations without myeloid leukemia. We reported a first case of nonleukemic MS of the spleen involving the liver in a 5-month-old boy presenting with hematochezia, petechial hemorrhage, fever, and hepatosplenomegaly. Bone marrow trephine biopsy and immunophenotypic flow cytometry revealed no evidence of myeloid leukemia. The patient underwent liver biopsy and splenectomy. Clinicopathology and immunohistochemistry suggested a disseminated nonleukemic MS. The patient died of respiratory failure on the seventh postoperative day. Early diagnosis of a disseminated nonleukemic MS may be quite important for patient survival and it should be considered one of the differential diagnoses of hepatosplenomegaly with atypical clinical features.
Background Brucellosis, caused by Brucella spp ., is a major zoonotic public health threat. Although several Brucella vaccines have been demonstrated for use in animals, Brucella spp . can cause human infection and to date, there are no human‐use vaccines licensed by any agency. Recently, methods in vaccine informatics have made major breakthroughs in peptide‐based epitopes, opening up a new avenue of vaccine development. Objectives The purpose of this article was to identify potential antigenic peptides in Brucella by proteome and peptidome analyses. Methods Mouse infection models were first established by injection with Brucella and spleen protein profiles were then analysed. Subsequently, the major histocompatibility complex class I or II (major histocompatibility complex [MHC]‐I/II)‐binding peptides in blood samples were collected by immunoprecipitation and peptides derived from Brucella proteins were identified through liquid chromatography–mass spectrometry (LC‐MS/MS). These peptides were then evaluated in a variety of ways, such as in terms of conservation in Brucella and synchronicity in predicted peptides (similarity and coverage), which allowed us to more effectively measure their antigenic potential. Results The expression of the inflammatory cytokines IL1B and IFN‐γ was significantly altered in the spleen of infected mice and some Brucella proteins, such as Muri, AcpP and GroES, were also detected. Meanwhile, in blood, 35 peptides were identified and most showed high conservation, highlighting their potential as antigen epitopes for vaccine development. In particular, we identified four proteins containing both MHC‐I‐ and MHC‐II‐binding peptides including AtpA, AtpD, DnaK and BAbS19_II02030. They were also compared with the predicted peptides to estimate their reliability. Conclusions The peptides we screened could bind to MHC molecules. After being stimulated with antigen T epitopes, Memory T cells can stimulate T cell activation and promote immune responses. Our results indicated that the peptides we identified may be good candidate targets for the design of subunit vaccines and these results pave the way for the study of safer vaccines against Brucella .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.