Triphenylamine (TPA) was reported to exhibit temperature‐dependent dual phosphorescence, where the red‐shifted band was assigned as the excimeric phosphorescence with an energy shift of >3000 cm−1 (J. Phys. Chem. 1991, 95, 7189). Here we show that purified TPA (purity: >99.97 %) shows a single phosphorescence band with a small energy shift of <200 cm−1 under the same experimental conditions. The new experimental results, along with theoretical calculations, suggest that the previously reported triplet excimer of TPA is probably not valid and is most likely due to an unidentified impurity. As‐received TPA samples, however, do exhibit temperature‐dependent dual phosphorescence bands, and the wavelength, relative intensity, and temperature dependence of the lower‐energy phosphorescence band vary significantly depending on dopant structures. It was found that dopant phosphorescence could still become dominant even in dilute third‐party solutions of the host at low temperature.
Lipid nanovesicles (LNVs) and polymer nanovesicles (PNVs), also known as liposomes and polymersomes, are becoming increasingly vital in global health. However, the two major classes of nanovesicles both exhibit their own issues that significantly limit potential applications. Here, by covalently attaching a naturally occurring phosphate "lipid head" and a synthetic polylactide "polymer tail" via facile ring-opening polymerization on a 500 g scale, a type of "chimeric" nanovesicles (CNVs) can be easily produced. Compared to LNVs, the reported CNVs exhibit reduced permeability for small and large molecules; on the other hand, the CNVs are less hydrophobic and exhibit enhanced tolerance toward proteins in buffer solutions without the need for hydrophilic polymeric corona such as poly(ethylene glycol)(PEG), in contrast to conventional PNVs. The proof-of-concept in vitro delivery experiments using hydrophilic solutions of fluorescein-PEG, rhodamine-PEG, and anti-cancer drug doxorubicin demonstrate that these CNVs, as a structurally diverse class of nano-materials, are highly promising as alternative carriers for therapeutic molecules in translational nanomedicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.