The impact of climate change is visually witnessed in the present environment by various natural disasters. This phenomenon of land surface temperature is one of the significant aspects to be estimated for the study of climate change. The increase in Land Surface Temperature (LST) may be due to ongoing developments in the field of urbanization and globalization. The objective of the study was to estimate the increase in the LST in relation to the Normalized Difference Vegetation Index (NDVI) and assess the spatial variation in the LST due to land use/land cover change. The study utilized Landsat 8 data to assess the land-use changes and their relation with LST in one of the main urbanized cities, i.e. Coimbatore district of Tamil Nadu, using Landsat imagery due to the availability of various land cover types by using the mathematical expressions in ARCMAP software. This study compares the LST between 2015 and 2020 to observe the change in the NDVI and LST over a period of 5 years in the Coimbatore district. There was an increase of 1°C in 5 years and the area of high LST had been increased comparatively. The maximum LST was found to be 73°C in 2015, which increased to 74°C in the year 2020 ;and the minimum LST was found to be 15°C in 2015, which increased to 19°C in the year 2020 depicting the ongoing change in the land use of the district. The study findings will help promulgate sustainable urban land-use policies and can be used for mitigating climate change.
Precipitation is one of the transportation components in hydrological cycle. The magnitude of precipitation swings with time and space. Majorly India receives precipitation in the form of rainfall. Precipitation plays a key role in the rainfed agriculture. The present study deals with the rainfall characteristics of Tiruchirappalli district, Tamil Nadu. Seasonal rainfall data from eighteen rain gauge stations (1971-2012) have been taken for analysis of seasonal and annual rainfall pattern of Tiruchirappalli district. Mean rainfall of the district is about 696 mm. The highest rainfall of 1247 mm recorded in the year 2005 and the lowest precipitation of 227 mm recorded in the year 1976. About 48 percent and 35 percent of the rainfall received in North East and South West Monsoon, respectively. Spatial rainfall distribution was studied with the help of Kriging interpolation technique and respective maps were prepared with Geographical Information System. The percentage departure of annual rainfall is classified under the category of excess, normal and large excess category. South East and central part of Tiruchirappalli receives moderate to low rainfall. North East parts of Tiruchirappalli district such as pullambadi, Lalgudi and nearby areas received maximum rainfall during North East Monsoon and South West Monsoon. In winter season Manapparai and Vaiyampatti region received more rainfall while in summer season Thottiam and Mayanur area received more rainfall. The two major highlighted crops in Trichy district are Banana and Onion. Tiruchirappalli district is one of the Banana growing belts in Tamil Nadu. Spatial distribution of rainfall maps will be helpful to form a crop plan for different crops to increase the agricultural productivity of Tiruchirappalli district and to ensure the food security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.