In natural scenes, objects rarely occur in isolation but appear within a spatiotemporal context. Here, we show that the perceived size of a stimulus is significantly affected by the context of the scene: brief previous presentation of larger or smaller adapting stimuli at the same region of space changes the perceived size of a test stimulus, with larger adapting stimuli causing the test to appear smaller than veridical and vice versa. In a human fMRI study, we measured the blood oxygen level-dependent activation (BOLD) responses of the primary visual cortex (V1) to the contours of large-diameter stimuli and found that activation closely matched the perceptual rather than the retinal stimulus size: the activated area of V1 increased or decreased, depending on the size of the preceding stimulus. A model based on local inhibitory V1 mechanisms simulated the inward or outward shifts of the stimulus contours and hence the perceptual effects. Our findings suggest that area V1 is actively involved in reshaping our perception to match the short-term statistics of the visual scene.
Previous studies have proposed a variety of mechanisms by which attention influences neuronal activity. Here we investigated the mechanisms of attention in the striate cortex of monkeys performing a spatial or an object-based attention task at various stimulus contrasts and compared neuronal contrast response functions with and without attention. Our data are best described by an “additive” interaction: The influence of attention on the neuronal response is relatively independent of the stimulus contrast, at least when the stimulus has enough contrast to become visible. This shows that attention adds to the neuronal responses in a largely contrast invariant manner. These data support recent functional magnetic resonance imaging studies and suggest that feedback from higher areas exerts a constant attentional drive that is mostly task not stimulus driven.
Models of visual attention hold that top-down signals from frontal cortex influence information processing in visual cortex. It is unknown whether situations exist in which visual cortex actively participates in attentional selection. To investigate this question, we simultaneously recorded neuronal activity in the frontal eye fields (FEF) and primary visual cortex (V1) during a curve-tracing task in which attention shifts are object-based. We found that accurate performance was associated with similar latencies of attentional selection in both areas and that the latency in both areas increased if the task was made more difficult. The amplitude of the attentional signals in V1 saturated early during a trial, whereas these selection signals kept increasing for a longer time in FEF, until the moment of an eye movement, as if FEF integrated attentional signals present in early visual cortex. In erroneous trials, we observed an interareal latency difference because FEF selected the wrong curve before V1 and imposed its erroneous decision onto visual cortex. The neuronal activity in visual and frontal cortices was correlated across trials, and this trial-to-trial coupling was strongest for the attended curve. These results imply that selective attention relies on reciprocal interactions within a large network of areas that includes V1 and FEF.contour grouping | noise correlation | error trials V isual scenes are usually too complex for all information to be analyzed at once. Selective attention selects a subset of the objects in the visual scene for detailed analysis at the expense of other items. Visual objects compete for selection, and the outcome of this competition depends on bottom-up cues such as saliency and perceptual organization and top-down cues that signal the objects' behavioral relevance (1). It is not well understood how these different cues interact and which brain areas take the lead in visual selection.The top-down mechanisms for attentional selection are tightly linked to those for the selection of actions (2), and accordingly, cortical areas related to action planning influence the deployment of visual attention. The frontal eye fields (FEF) is one such area that is involved in visual processing, shifts of visual attention (2, 3), and also in the control of eye movements (4, 5). Area FEF contains different types of cells. Visual processing relies on visual and visuomovement cells, whereas the programming of eye movements relies on the activity of visuomovement and movement cells (6, 7). There are several lines of evidence that also implicate FEF in attentional control. First, FEF inactivation impairs attention shifts toward the contralateral visual field (8, 9). Second, subthreshold FEF microstimulation enhances neuronal activity in visual cortex in a manner that is reminiscent of selective attention (10, 11). Third, a role of FEF in the top-down guidance of attention is supported by studies on visual search. In search, selection signals in frontal cortex precede those in area V4 by 50 ms, sugges...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.