Background Lymphoma is the most common spinal cord neoplasm and second most common intracranial tumor in cats, but description of specific magnetic resonance imaging (MRI) features is lacking. Objective Describe the clinical and MRI features of lymphoma affecting the central (CNS) or peripheral (PNS) nervous system or both in cats. Animals Thirty‐one cats with confirmed cytological or histopathological diagnosis or both of lymphoma involving the CNS or PNS or both, and MRI findings of the lesions. Methods Multicenter retrospective descriptive study. Signalment and medical information were recorded. Magnetic resonance imaging findings were reviewed by 3 observers following a list of predefined criteria and consensus was sought. Frequency distributions of the different categorical data were reported. Results Median duration of clinical signs at time of presentation was 14 days (range, 1‐90). Neurological examination was abnormal in 30/31 cats. On MRI, lesions affecting the CNS were diagnosed in 18/31 cats, lesions in both CNS and PNS in 12/31, and lesions in the PNS only in 1/31. Intracranial lesions were diagnosed in 22 cats (extra‐axial, 7/22; intra‐axial, 2/22; mixed, 13/22), and spinal lesions were diagnosed in 12 (6/12 involving the conus medullaris and lumbosacral plexuses). Infiltration of adjacent extra‐neural tissue was present in 11/31 cases. Contrast enhancement was seen in all lesions, being marked in 25/30. Meningeal enhancement was present in all but 2 cases. Several distinct MRI patterns were observed. Conclusions and Clinical Importance Nervous system lymphoma in cats has a wide range of MRI features, of which none is pathognomonic. However, together with clinical data and cerebrospinal fluid (CSF) analysis, MRI may provide a strong tentative antemortem diagnosis.
Objectives To determine whether the neurological examination correctly distinguishes between central and peripheral vestibular lesions in dogs. Materials and Methods Retrospective study on dogs with vestibular disease presenting to two referral clinics in Germany. Results Ninety‐three dogs were included; neurological examination suggested central vestibular disease in 62 and a peripheral lesion in 31. MRI diagnosis was central vestibular disease in 68 dogs and peripheral in 25. Of the 62 dogs with a lesion localisation diagnosed as central vestibular by neurological exam, 61 were correctly identified (98.4%). Twenty‐four of the 31 dogs diagnosed with a peripheral lesion by neurological exam had a consistent lesion on MRI (77.4%). Clinical Significance The neurological examination is efficient at identifying lesions in the central vestibular system but less so for peripheral lesions. Therefore it is prudent to recommend imaging in dogs that show signs of peripheral vestibular syndrome but do not rapidly respond to treatment.
BackgroundSteroid-responsive meningitis-arteritis (SRMA) is an immune-mediated disorder characterized by neutrophilic pleocytosis and an arteritis particularly in the cervical leptomeninges. Previous studies of the disease have shown increased levels of IL-6 and TGF-ß1 in cerebrospinal fluid (CSF). In the presence of these cytokines, naive CD4+ cells differentiate into Th17 lymphocytes which synthesize interleukin 17 (IL-17). It has been shown that IL-17 plays an active role in autoimmune diseases, it induces and mediates inflammatory responses and has an important role in recruitment of neutrophils. The hypothesis of a Th17-skewed immune response in SRMA should be supported by evaluating IL-17 and CD40L, inducing the vasculitis.MethodsAn enzyme-linked immunosorbent assay (ELISA) was performed to measure IL-17 and CD40L in serum and CSF from a total of 79 dogs. Measurements of patients suffering from SRMA in the acute state (SRMA A) were compared with levels of patients under treatment with steroids (SRMA T), recurrence of the disease (SRMA R), other neurological disorders, and healthy dogs, using the two-part test. Additionally, secretion of IL-17 and interferon gamma (IFN-γ) from the peripheral blood mononuclear cells (PBMCs) was confirmed by an enzyme-linked immunospot (ELISpot) assay.ResultsSignificant higher levels of IL-17 were found in CSF of dogs with SRMA A compared with SRMA T, other neurological disorders and healthy dogs (p < 0.0001). In addition, levels of CD40L in CSF in dogs with SRMA A and SRMA R were significantly higher than in those with SRMA T (p = 0.0004) and healthy controls (p = 0.014). Furthermore, CSF concentrations of IL-17 and CD40L showed a strong positive correlation among each other (rSpear = 0.6601; p < 0.0001) and with the degree of pleocytosis (rSpear = 0.8842; p < 0.0001 and rSpear = 0.6649; p < 0.0001, respectively). IL-17 synthesis from PBMCs in SRMA patients was confirmed; however, IL-17 is mainly intrathecally produced.ConclusionsThese results imply that Th17 cells are inducing the autoimmune response in SRMA and are involved in the severe neutrophilic pleocytosis and disruption of the blood-brain barrier (BBB). CD-40L intrathecal synthesis might be involved in the striking vasculitis. The investigation of the role of IL-17 in SRMA might elucidate important pathomechanism and open new therapeutic strategies.
BackgroundSteroid Responsive Meningitis-Arteritis (SRMA) is a common cause of inflammation of the canine central nervous system (CNS). To investigate if transforming growth factor beta 1 (TGF-β1), interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) are involved in the production of excessive immunoglobulin A (IgA), the induction of acute phase proteins and in the development of a systemic necrotizing vasculitis, characteristic of SRMA, these three signalling proteins were evaluated.ResultsCerebrospinal fluid (CSF) and serum samples of dogs during the acute phase of SRMA (SRMA) were tested for IL-6, VEGF and TGF- β1. Results were compared to those of dogs affected with SRMA during treatment (SRMA Th) and during relapse (SRMA R), to dogs with other meningoencephalomyelitides (ME), with miscellaneous non-inflammatory diseases of the CNS (CNS-Mix), with idiopathic epilepsy (IE), with systemic inflammatory diseases (Syst. Infl.) and with healthy dogs (Healthy). Concentrations of IL-6 and VEGF in CSF were significantly elevated in the SRMA group compared to the other disease categories (p < 0.05). The CSF concentrations of TGF-β1 were increased in SRMA group, but statistically significant differences were found only in comparison with Healthy and CNS-Mix groups. No differences were detected in the serum concentrations of TGF-β1 between the different groups. In untreated SRMA patients, a positive correlation (rSpear = 0.3549; P = 0.0337) between concentrations of TGF-β1 and IgA concentration was found in CSF, while concentrations of IL-6 and VEGF in CSF positively correlated with the degree of pleocytosis (rSpear = 0.8323; P < 0.0001 and rSpear = 0.5711; P = 0.0166, respectively).ConclusionsOur results suggest that these three signalling proteins are biomarkers of disease activity in SRMA. VEGF might play an important role in the development of a systemic arteritis. TGF-β1 is considered to be involved in the excessive IgA production, while IL-6 in the pleocytosis. The combined intrathecal increase of TGF-β1 and IL-6 detected in SRMA could possibly force CD4 progenitors to differentiate towards the newly described Th17 lymphocyte subset and enhance the autoimmune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.