The question whether one can recover the shape of a geometric object from its Laplacian spectrum ('hear the shape of the drum') is a classical problem in spectral geometry with a broad range of implications and applications. While theoretically the answer to this question is negative (there exist examples of iso-spectral but non-isometric manifolds), little is known about the practical possibility of using the spectrum for shape reconstruction and optimization. In this paper, we introduce a numerical procedure called isospectralization, consisting of deforming one shape to make its Laplacian spectrum match that of another. We implement the isospectralization procedure using modern differentiable programming techniques and exemplify its applications in some of the classical and notoriously hard problems in geometry processing, computer vision, and graphics such as shape reconstruction, pose and style transfer, and dense deformable correspondence.
We introduce the first learning-based method for recovering shapes from Laplacian spectra. Our model consists of a cycle-consistent module that maps between learned latent vectors of an auto-encoder and sequences of eigenvalues. This module provides an efficient and effective linkage between Laplacian spectrum and geometry. Our data-driven approach replaces the need for ad-hoc regularizers required by prior methods, while providing more accurate results at a fraction of the computational cost. Our learning model applies without modifications across different dimensions (2D and 3D shapes alike), representations (meshes, contours and point clouds), as well as across different shape classes, and admits arbitrary resolution of the input spectrum without affecting complexity. The increased flexibility allows us to address notoriously difficult tasks in 3D vision and geometry processing within a unified framework, including shape generation from spectrum, mesh superresolution, shape exploration, style transfer, spectrum estimation from point clouds, segmentation transfer and pointto-point matching.
We consider the problem of localizing relevant subsets of non-rigid geometric shapes given only a partial 3D query as the input. Such problems arise in several challenging tasks in 3D vision and graphics, including partial shape similarity, retrieval, and non-rigid correspondence. We phrase the problem as one of alignment between short sequences of eigenvalues of basic differential operators, which are constructed upon a scalar function defined on the 3D surfaces. Our method therefore seeks for a scalar function that entails this alignment. Differently from existing approaches, we do not require solving for a correspondence between the query and the target, therefore greatly simplifying the optimization process; our core technique is also descriptor-free, as it is driven by the geometry of the two objects as encoded in their operator spectra. We further show that our spectral alignment algorithm provides a remarkably simple alternative to the recent shape-from-spectrum reconstruction approaches. For both applications, we demonstrate improvement over the state-of-the-art either in terms of accuracy or computational cost.
We introduce a novel learning-based method to recover shapes from their Laplacian spectra, based on establishing and exploring connections in a learned latent space. The core of our approach consists in a cycle-consistent module that maps between a learned latent space and sequences of eigenvalues. This module provides an efficient and effective link between the shape geometry, encoded in a latent vector, and its Laplacian spectrum. Our proposed data-driven approach replaces the need for ad-hoc regularizers required by prior methods, while providing more accurate results at a fraction of the computational cost. Moreover, these latent space connections enable novel applications for both analyzing and controlling the spectral properties of deformable shapes, especially in the context of a shape collection. Our learning model and the associated analysis apply without modifications across different dimensions (2D and 3D shapes alike), representations (meshes, contours and point clouds), nature of the latent space (generated by an auto-encoder or a parametric model), as well as across different shape classes, and admits arbitrary resolution of the input spectrum without affecting complexity. The increased flexibility allows us to address notoriously difficult tasks in 3D vision and geometry processing within a unified framework, including shape generation from spectrum, latent space exploration and analysis, mesh super-resolution, shape exploration, style transfer, spectrum estimation for point clouds, segmentation transfer and non-rigid shape matching.
Gaussian Boson Sampling is a non-universal model for quantum computing inspired by the original formulation of the Boson Sampling problem. Nowadays, it represents a paradigmatic quantum platform to reach the quantum advantage regime in a specific computational model. Indeed, thanks to the implementation in photonics-based processors, the latest Gaussian Boson Sampling experiments have reached a level of complexity where the quantum apparatus has solved the task faster than currently up-to-date classical strategies. In addition, recent studies have identified possible applications beyond the inherent sampling task. In particular, a direct connection between photon counting of a genuine Gaussian Boson Sampling device and the number of perfect matchings in a graph has been established. In this work, we propose to exploit such a connection to benchmark Gaussian Boson Sampling experiments. We interpret the properties of the feature vectors of the graph encoded in the device as a signature of correct sampling from the true input state. Within this framework, two approaches are presented. The first method exploits the distributions of graph feature vectors and classification via neural networks. The second approach investigates the distributions of graph kernels. Our results provide a novel approach to the actual need for tailored algorithms to benchmark large-scale Gaussian Boson Samplers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.