The introduction of the Information and Communication Technologies throughout the last decades has created a trend of providing daily objects with smartness, aiming to make human life more comfortable. The paradigm of Smart Cities arises as a response to the goal of creating the city of the future, where (1) the well-being and rights of their citizens are guaranteed, (2) industry and (3) urban planning is assessed from an environmental and sustainable viewpoint. Smart Cities still face some challenges in their implementation, but gradually more research projects of Smart Cities are funded and executed. Moreover, cities from all around the globe are implementing Smart City features to improve services or the quality of life of their citizens. Through this article, (1) we go through various definitions of Smart Cities in the literature, (2) we review the technologies and methodologies used nowadays, (3) we summarise the different domains of applications where these technologies and methodologies are applied (e.g. health and education), (4) we show the cities that have integrated the Smart City paradigm in their daily functioning and (5) we provide a review of the open research challenges. Finally, we discuss about the future opportunities for Smart Cities and the issues that must be tackled in order to move towards the cities of the future.
The increase of life expectancy in modern society has caused an increase in elderly population. Elderly people want to live independently in their home environment for as long as possible. However, as we age, our physical skills tend to worsen and our social circle tends to become smaller, something that often leads to a considerable decrease of both our physical and social activities. In this paper, we present an AAL framework developed within the SONOPA project, whose objective is to promote active ageing by combining a social network with information inferred using in-home sensors.
Energy-efficiency related research has reached a growing interest in recent years due to the imminent scarcity of non-renewable resources in our environment and the impending impacts their usage have on our environment. Thus, facing the reduction of energy waste and management has become a pivotal issue in our society. To cope with energy inefficiency, the scientific research community has identified the promotion of people's behaviour change as a critical field to foster environmental sustainability. However, the body of literature shows a lack of systematic methods and processes to reach a common ground when designing technology for promoting sustainable behaviour change. Therefore, this paper contributes with a thorough review and analysis of state of the art. Firstly, theoretical works related to behaviour change are collected and studied to clarify their main concepts and theories. Secondly, the different technologies, processes, methods and techniques applied in the field are reviewed to find diverse strategies in the application of the previously explained theoretical domains. Moreover, a wide range of systems developed to improve energy efficiency through human behaviour change is analysed (from augmented objects to the Internet of Things, digital applications or websites). Finally, the detected research gaps are listed to guide future research when aiming to raise the awareness of individuals through Information and Communication Technologies. INDEX TERMS Behaviour change, Internet of Things, sustainability, sustainable behaviour change, ICT.
In this article, the authors propose a new approach to automate the analysis of the political discourse of the citizens and public servants, to allow public administrations to better react to their needs and claims. The tool presented in this article can be applied to the analysis of the underlying political themes in any type of text, in order to better understand the reasons behind it. To do so, the authors have built a discourse classifier using multi-scale convolutional neural networks in seven different languages: Spanish, Finnish, Danish, English, German, French, and Italian. Each of the language-specific discourse classifiers has been trained with sentences extracted from annotated parties' election manifestos. The analysis proves that enhancing the multi-scale convolutional neural networks with context data improves the political analysis results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.