The magnetocaloric properties of polycrystalline Ni 50 Mn 50−x In x ͑15ഛ x ഛ 16͒ associated with the second order magnetic transition at the Curie temperature and the first order martensitic transition were studied using magnetization measurements. The refrigeration capacity and magnetic entropy change were found to depend on the In concentration and reach a maximum value of refrigeration capacity of 280 J / kg with a magnetic entropy change of −6.8 J / kg K at 318 K for a magnetic field change of 5 T. These values of the magnetocaloric parameters are comparable to that of the largest values reported near the second order transition of metallic magnets near room temperature.
First-order magnetic transitions (FOMTs) with a large discontinuity in magnetization are highly sought in the development of advanced functional magnetic materials. Isosymmetric magnetoelastic FOMTs that do not perturb crystal symmetry are especially rare, and only a handful of material families, almost exclusively transition metal-based, are known to exhibit them. Yet, here we report a surprising isosymmetric FOMT in a rare-earth intermetallic, Eu2In. What makes this transition in Eu2In even more remarkable is that it is associated with a large latent heat and an exceptionally high magnetocaloric effect in low magnetic fields, but with tiny lattice discontinuities and negligible hysteresis. An active role of the Eu-5d and In-4p states and a rather unique electronic structure borne by In to Eu charge transfer, altogether result in an unusual exchange mechanism that both sets the transition in motion and unveils an approach toward developing specific magnetic functionalities ad libitum.
Room temperature ferromagnetic ordering is observed in chemically grown ZnO nanocrystals. Nanocrystals are simultaneously capped by two different organic molecules inducing p-type and n-type defects. A saturation magnetization of 0.008 emu/g is achieved at 300 K. Incorporation of Mn 2+ ions at substitutional sites in nanocrystals gives rise higher saturation magnetic moment at lower doping level. ZnO nanocrystals codoped with Mn 2+ and Co 2+ and prepared under identical conditions revealed an increase in saturation magnetization. However, the saturation magnetic moment remains lower than that obtained for Co 2+ -doped ZnO nanocrystals prepared by the same method. An increase in saturation magnetization was invariably associated with quenching of photoluminescence emission. These findings reaffirm that magnetism in nanocrystals is a defect induced phenomenon that can be controlled by choice of capping agent as well as incorporation of the transition metal impurity. Magnetization as a function of temperature [M(T)] curve is discussed in view of available reports on the global exchange mechanism in these ferromagnetic nanocrystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.