This paper presents a more detailed concept of Human-Robot Interaction systems architecture. One of the main differences between the proposed architecture and other ones is the methodology of information acquisition regarding the robot's interlocutor. In order to obtain as much information as possible before the actual interaction took place, a custom Internet-of-Things-based sensor subsystems connected to Smart Infrastructure was designed and implemented, in order to support the interlocutor identification and acquisition of initial interaction parameters. The Artificial Intelligence interaction framework of the developed robotic system (including humanoid Pepper with its sensors and actuators, additional local, remote and cloud computing services) is being extended with the use of custom external subsystems for additional knowledge acquisition: device-based human identification, visual identification and audio-based interlocutor localization subsystems. These subsystems were deeply introduced and evaluated in this paper, presenting the benefits of integrating them into the robotic interaction system. In this paper a more detailed analysis of one of the external subsystems-Bluetooth Human Identification Smart Subsystem-was also included. The idea, use case, and a prototype, integration of elements of Smart Infrastructure systems and the prototype implementation were performed in a small front office of the Weegree company as a decent test-bed application area.The days, when simply having a robot was impressive, are gone. The technology should be more than just presenting content. It should be truly interactive. The authors of this work evaluated methods for the purpose of measurement and influencing the Human-Robot interaction User Experience, (see Reference [1]), concluding that the robot's interaction is perceived as more natural if the robot is able to personalize its communication content towards a particular interlocutor. It became clear, that the system should be able to get as much information as possible during and before the conversation takes place [2]. One of the key aspects in a healthy conversation is emotional state recognition. All the improvements of the robots presented in this paper are aiming for natural, real integration with human customers with the implementation of Artificial Intelligence [3,4].The authors of this work have indicated extending the robot's capabilities by adding additional external wireless sensors in Reference [2], however without Smart Infrastructure. Implementation of a remote PID (Passive Infrared Detector) sensor in order to get a signal "someone is coming" seemed to be enough at that stage.In this paper an extended approach is being presented, introducing Human Identification Smart Subsystems (HISS)-a set of external sensors, which enable us to obtain much more valuable information, resulting from the communication with the Smart Infrastructure [5] or databases of the customer. The idea presented in this paper has been successfully verified and implemented and the con...
This article presents the capabilities and selected measurement results from the newly developed low-cost air pollution measurement system mounted on an unmanned aerial vehicle (UAV). The system is designed and manufactured by the authors and is intended to facilitate, accelerate, and ensure the safety of operators when measuring air pollutants. It allows the creation of three-dimensional models and measurement visualizations, thanks to which it is possible to observe the location of leakage of substances and the direction of air pollution spread by various types of substances. Based on these models, it is possible to create area audits and strategies for the elimination of pollution sources. Thanks to the usage of a multi-socket microprocessor system, the combination of nine different air quality sensors can be installed in a very small device. The possibility of simultaneously measuring several different substances has been achieved at a very low cost for building the sensor unit: 70 EUR. The very small size of this device makes it easy and safe to mount it on a small drone (UAV). Because of this device, many harmful chemical compounds such as ammonia, hexane, benzene, carbon monoxide, and carbon dioxide, as well as flammable substances such as hydrogen and methane, can be detected. Additionally, a very important function is the ability to perform measurements of PM2.5 and PM10 suspended particulates. Thanks to the use of UAV, the measurement is carried out remotely by the operator, which allows us to avoid the direct exposure of humans to harmful factors. A big advantage is the quick measurement of large spaces, at different heights above the ground, in different weather conditions. Because of the three-dimensional positioning from GPS receiver, users can plot points and use colors reflecting a concentration of measured features to better visualize the air pollution. A human-friendly data output can be used to determine the mostly hazardous regions of the sampled area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.