Since air pollution has been linked to a plethora of human health problems, strategies to improve air quality are indispensable. Despite the complexity in composition of air pollution, phytoremediation was shown to be effective in cleaning air. Plants are known to scavenge significant amounts of air pollutants on their aboveground plant parts. Leaf fall and runoff lead to transfer of (part of) the adsorbed pollutants to the soil and rhizosphere below. After uptake in the roots and leaves, plants can metabolize, sequestrate and/or excrete air pollutants. In addition, plant-associated microorganisms play an important role by degrading, detoxifying or sequestrating the pollutants and by promoting plant growth. In this review, an overview of the available knowledge about the role and potential of plant–microbe interactions to improve indoor and outdoor air quality is provided. Most importantly, common air pollutants (particulate matter, volatile organic compounds and inorganic air pollutants) and their toxicity are described. For each of these pollutant types, a concise overview of the specific contributions of the plant and its microbiome is presented. To conclude, the state of the art and its related future challenges are presented.
The challenges facing modern plant production involve (i) responding to the demand for food and resources of plant origin from the world's rapidly growing population, (ii) coping with the negative impact of stressful conditions mainly due to anthropopressure, and (iii) meeting consumers' new requirements and preferences for food that is high in nutritive value, natural, and free from harmful chemical additives. Despite employing the most modern plant cultivation technologies and the progress that has been made in breeding programs, the genetically-determined crop potential is still far from being fully exploited. Consequently yield and quality are often reduced, making production less, both profitable and attractive. There is an increasing desire to reduce the chemical input in agriculture and there has been a change toward integrated plant management and sustainable, environmentally-friendly systems. Biostimulants are a category of relatively new products of diverse formulations that positively affect a plant's vital processes and whose impact is usually more evident under stressful conditions. In this paper, information is provided on the mode of action of a nitrophenolates-based biostimulant, Atonik, in model species and economically important crops grown under both field and controlled conditions in a growth chamber. The effects of Atonik on plant morphology, physiology, biochemistry (crops and model plant) and yield and yield parameters (crops) is demonstrated. Effects of other biostimulants on studied in this work processes/parameters are also presented in discussion.
Particulate matter (PM) is one of the most harmful inhaled pollutants. When PM is emitted into the atmosphere, the only possible method for cleaning ambient air is through vegetation acting as biological filters for pollutants. However, in winter periods when the concentration of PM is usually the highest, the efficiency of plants is very low. The aim of this work was therefore to examine the accumulation of PM and selected trace elements (TE) by three species, evergreen coniferous Taxus baccata L. and Pinus nigra Arn., and deciduous Carpinus betulus L. during the winter season. The highest amounts of PM accumulated on the foliage of P. nigra, while TE on the leaves of C. betulus. Most of the PM accumulated on plant foliage belonged to the large fraction size (10–100 μm) and was deposited on the surface of foliage (SPM). The concentration of four TE (Ni, Pb, Cd, and Sb) was higher in PM accumulated on foliage, while in the case of three other TE (Zn, Cr and Mg), their concentration was higher in plant tissue. The TE were recorded in all PM size fractions and were rather equally distributed between surface PM (SPM) and in-wax PM (WPM). These findings have implications for urban plantings in countries with short vegetative season, where tolerant conifer species and deciduous species which keep foliage through winter should be included in urban forest plantings due to their efficiency in the removal of pollutants from the air.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.