Abstract. The last decade witnessed a manifest shift in the microprocessor industry towards chip designs that promote parallel computing. Until recently the privilege of a select group of large research centers, Teraflop computing is becoming a commodity owing to inexpensive GPU cards and multi to many-core x86 processors. This paradigm shift towards large scale parallel computing has been leveraged in Chrono, a freely available C++ multi-physics simulation package. Chrono is made up of a collection of loosely coupled components that facilitate different aspects of multi-physics modeling, simulation, and visualization. This contribution provides an overview of Chrono::Engine, Chrono::Flex, Chrono::Fluid, and Chrono::Render, which are modules that can capitalize on the processing power of hundreds of parallel processors. Problems that can be tackled in Chrono include but are not limited to granular material dynamics, tangled large flexible structures with self contact, particulate flows, and tracked vehicle mobility. The paper presents an overview of each of these modules and illustrates through several examples the potential of this multi-physics library.
This paper describes an approach for the dynamic simulation of complex computer-aided engineering models where large collections of rigid bodies interact mutually through millions of frictional contacts and bilateral mechanical constraints. Thanks to the massive parallelism available on today's GPU boards, we are able to simulate sand, granular materials, and other complex physical scenarios with one order of magnitude speedup when compared to a sequential CPU-based implementation of the discussed algorithms.
Natural and artificial self-propelled systems must manage environmental interactions during movement. Such interactions, which we refer to as active collisions, are fundamentally different from momentum-conserving interactions studied in classical physics, largely because the internal driving of the locomotor can lead to persistent contact with heterogeneities. Here, we experimentally and numerically study the effects of active collisions on a laterally-undulating sensory-deprived robophysical model, whose dynamics are applicable to self-propelled systems across length scales and environments. The robot moves via spatial undulation of body segments, with a nearly-linear centerof-geometry trajectory. Interactions with a single rigid post scatter the robot, and these deflections are proportional to the head-post contact duration. The distribution of scattering angles is smooth and strongly-peaked directly behind the post. Interactions with a single row of evenly-spaced posts (with inter-post spacing d) produce distributions reminiscent of far-field diffraction patterns: as d decreases, distinct secondary peaks emerge as large deflections become more likely. Surprisingly, we find that the presence of multiple posts does not change the nature of individual collisions; instead, multi-modal scattering patterns arise from multiple posts altering the likelihood of individual collisions to occur. As d decreases, collisions near the leading edges of the posts become more probable, and we find that these interactions are associated with larger deflections. Our results, which highlight the surprising dynamics that can occur during active collisions of self-propelled systems, can inform control principles for locomotors in complex terrain and facilitate design of task-capable active matter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.