The Robot Operating System (ROS) is a set of software libraries and tools used to build robotic systems. ROS is known for a distributed and modular design. Given a model of the environment, task planning is concerned with the assembly of actions into a structure that is predicted to achieve goals. This can be done in a way that minimises costs, such as time or energy. Task planning is vital in directing the actions of a robotic agent in domains where a causal chain could lock the agent into a dead-end state. Moreover, planning can be used in less constrained domains to provide more intelligent behaviour. This paper describes the ROSP LAN framework, an architecture for embedding task planning into ROS systems. We provide a description of the architecture and a case study in autonomous robotics. Our case study involves autonomous underwater vehicles in scenarios that demonstrate the flexibility and robustness of our approach.
Intervention autonomous underwater vehicles (I-AUVs) have the potential to open new avenues for the maintenance and monitoring of offshore subsea facilities in a cost-effective way. However, this requires challenging intervention operations to be carried out persistently, thus minimizing human supervision and ensuring a reliable vehicle behaviour under unexpected perturbances and failures. This paper describes a system to perform autonomous intervention—in particular valve-turning—using the concept of persistent autonomy. To achieve this goal, we build a framework that integrates different disciplines, involving mechatronics, localization, control, machine learning and planning techniques, bearing in mind robustness in the implementation of all of them. We present experiments in a water tank, conducted with Girona 500 I-AUV in the context of a multiple intervention mission. Results show how the vehicle sets several valve panel configurations throughout the experiment while handling different errors, either spontaneous or induced. Finally, we report the insights gained from our experience and we discuss the main aspects that must be matured and refined in order to promote the future development of intervention autonomous vehicles that can operate, persistently, in subsea facilitiesThis work has been supported by the FP7-ICT-2011-7 project PANDORA-Persistent Autonomy through Learning, Adaptation, Observation and Re-planning (Ref. 288273) funded by the European Commissio
Abstract-Recent efforts in the field of interventionautonomous underwater vehicles (I-AUVs) have started to show promising results in simple manipulation tasks. However, there is still a long way to go to reach the complexity of the tasks carried out by ROV pilots. This paper proposes an intervention framework based on parametric Learning by Demonstration (p-LbD) techniques in order to acquire multiple strategies to perform an autonomous intervention task adapted to different environment conditions. The manipulation skills of a pilot are acquired thought a set of demonstrations done under different environment circumstances, in our case different levels of water current. The proposed algorithm is able to learn these different strategies and depending on the estimated water current, autonomously reproduce a combined strategy to perform the task. The p-LbD algorithm as well as its interplay with the rest of the modules that take part in the proposed framework are described in this paper. We also present results on a free-floating valve turning task, using the Girona 500 I-AUV equipped with a manipulator and a customized end-effector. The obtained results show the feasibility of the p-LbD algorithm to perform autonomous intervention tasks combining the learned strategies depending on the environment conditions.
Abstract-Intervention autonomous underwater vehicles (IAUVs) are a promising platform to perform intervention task in underwater environments, replacing current methods like remotely operate underwater vehicles (ROVs) and manned submersibles that are more expensive. This article proposes a complete system including all the necessary elements to perform a valve turning task using an I-AUV. The knowledge of an operator to perform the task is transmitted to an I-AUV by a learning by demonstration (LbD) algorithm. The algorithm learns the trajectory of the vehicle and the end-effector to accomplish the valve turning. The method has shown its feasibility in a controlled environment repeating the learned task with different valves and configurations.
Abstract-We investigate methods to improve fault-tolerance of Autonomous Underwater Vehicles (AUVs) to increase their reliability and persistent autonomy. We propose a learningbased approach that is able to discover new control policies to overcome thruster failures as they happen. The proposed approach is a model-based direct policy search that learns on an on-board simulated model of the AUV. The model is adapted to a new condition when a fault is detected and isolated. Since the approach generates an optimal trajectory, the learned fault-tolerant policy is able to navigate the AUV towards a specified target with minimum cost. Finally, the learned policy is executed on the real robot in a closed-loop using the state feedback of the AUV. Unlike most existing methods which rely on the redundancy of thrusters, our approach is also applicable when the AUV becomes under-actuated in the presence of a fault. To validate the feasibility and efficiency of the presented approach, we evaluate it with three learning algorithms and three policy representations with increasing complexity. The proposed method is tested on a real AUV, Girona500.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.