In this paper, the results on the fabrication of ferroelectric membranes as vascular patches with modified surfaces are presented. For the modification of a membrane surface contacting blood, DLC coating was deposited using the pulsed vacuum arc deposition technique. The physico-chemical properties and cytotoxicity of the membranes modified under various conditions were studied. It was found that DLC coatings do not affect membrane microstructure, preserving its crystal structure as well as its high strength and elongation. It was revealed that an increase in the capacitor storage voltage results in the rise in sp2- and sp-hybridized carbon concentration, which makes it possible to control the chemical structure and surface energy of the modified surface. The experiments with 3T3L1 fibroblasts showed no toxic effects of the materials extracts.
The surface hydrophobicity of poly(ε-caprolactone) electrospun scaffolds prevents their interactions with cells and tissue integration. Although plasma treatment of scaffolds enhances their hydrophilicity, this effect is temporary, and the hydrophobicity of the scaffolds is restored in about 30 days. In this communication, we report a method for hydrophilization of poly(ε-caprolactone) electrospun scaffolds for more than 6 months. To that end, diamond-like coating was deposited on the surface of the scaffolds in a nitrogen atmosphere using pulsed vacuum arc deposition with sputtering of graphite target. This approach allows for a single-side hydrophilization of the scaffold (water contact angle of 22 ± 3° vs. 126 ± 2° for pristine PCL scaffold) and preserves its structure. With increased nitrogen pressure in the chamber, sp3-hybridized carbon content decreased twice (sp2/sp3 ratio decreased from 1.06 to 0.52), which demonstrates the possibility of tailoring the content of carbon in sp2 and sp3 hybridization state. Nitrogen content in the deposited coatings was found at 16.1 ± 0.9 at.%. In vitro tests with fibroblast cell culture did not reveal any cytotoxic compounds in sample extracts.
The results of studies of the optical and photocatalytic properties of titanium oxide films deposited by vacuum-arc evaporation in an oxygen-containing atmosphere are presented. It was experimentally shown that films of different degrees of oxidation are formed during deposition, depending on the amount of oxygen flow entering the working chamber. The results of studies of the obtained films showed that the films obtained in a transitional mode between the deposition of metallic Ti films and dielectric TiO2 films have the maximum photocatalytic activity. This deposition mode is observed at the oxygen flow into the working chamber from 9 to 12 cm3/min Keywords: titanium dioxide, anatase, photocatalytic activity.
The paper presents the results of testing the technology of deposition of diamond-like carbon films on the surface of stainless steel substrates at different process parameters, a quantitative assessment of the sp3 bond content and the physical and mechanical characteristics of the coatings obtained, a conclusion about the influence of the deposition process technological parameters on these characteristics is formulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.