Species occurrence records provide the basis for many biodiversity studies. They derive from georeferenced specimens deposited in natural history collections and visual observations, such as those obtained through various mobile applications. Given the rapid increase in availability of such data, the control of quality and accuracy constitutes a particular concern. Automatic filtering is a scalable and reproducible means to identify potentially problematic records and tailor datasets from public databases such as the Global Biodiversity Information Facility (GBIF; http://www.gbif.org), for biodiversity analyses. However, it is unclear how much data may be lost by filtering, whether the same filters should be applied across all taxonomic groups, and what the effect of filtering is on common downstream analyses. Here, we evaluate the effect of 13 recently proposed filters on the inference of species richness patterns and automated conservation assessments for 18 Neotropical taxa, including terrestrial and marine animals, fungi, and plants downloaded from GBIF. We find that a total of 44.3% of the records are potentially problematic, with large variation across taxonomic groups (25–90%). A small fraction of records was identified as erroneous in the strict sense (4.2%), and a much larger proportion as unfit for most downstream analyses (41.7%). Filters of duplicated information, collection year, and basis of record, as well as coordinates in urban areas, or for terrestrial taxa in the sea or marine taxa on land, have the greatest effect. Automated filtering can help in identifying problematic records, but requires customization of which tests and thresholds should be applied to the taxonomic group and geographic area under focus. Our results stress the importance of thorough recording and exploration of the meta-data associated with species records for biodiversity research.
28Species occurrence records provide the basis for many biodiversity studies. They derive from geo-referenced specimens deposited in natural history collections and visual observations, such as those obtained through various mobile applications. Given the rapid increase in availability of such data, the control of quality and accuracy constitutes a particular concern. Automatic flagging and filtering are a scalable and reproducible means to identify potentially problematic records in datasets from public databases such as the Global Biodiversity Information Facility (GBIF; www.gbif.org). However, it is unclear how much data may be lost by filtering, whether the same tests should be applied across all taxonomic groups, and what is the effect of filtering for common downstream analyses. Here, we evaluate the effect of 13 recently proposed filters on the inference of species richness patterns and automated conservation assessments for 18 Neotropical taxa including animals, fungi, and plants, terrestrial and marine, downloaded from GBIF. We find that 29-90% of the records are potentially erroneous, with large variation across taxonomic groups. Tests for duplicated information, collection year, basis of record as well as urban areas and coordinates for terrestrial taxa in the sea or marine taxa on land have the greatest effect. While many flagged records might not be de facto erroneous, they could be overly imprecise and increase uncertainty in downstream analyses. Automated flagging can help in identifying problematic records, but requires customization of which tests and thresholds should be applied to the taxonomic group and geographic area under focus. Our results stress the importance of thorough exploration of the meta-data associated with species records for biodiversity research. 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44Publicly available species distribution data have become a crucial resource in biodiversity research, including studies in 46 ecology, biogeography, systematics and conservation biology. In particular, the availability of digitized collections from 47 museums and herbaria, and citizen science observations has increased drastically over the last few years. As of today, 48 the largest public aggregator for geo-referenced species occurrences data, the Global Biodiversity Information Facility 49 (www.gbif.org), provides access to more than 1.3 billion geo-referenced occurrence records for species from across the 50 globe and the tree of life. 51A central challenge to the use of these publicly available species occurrence data in research are erroneous geographic 52 coordinates (Anderson et al. 2016). Errors mostly arise because public databases integrate records collected with 53 different methodologies in different places, at different times; often without centralized curation and only rudimentary 54 meta-data. For instance, erroneous coordinates caused by data-entry errors or automated geo-referencing from vague 55 locality descriptions are common (Maldonado et al. 2015; Yesson et al. 2007)...
This study presents nine new records and the conservation status of Lamiaceae species in Rio Grande do Norte State (RN), Brazil. The data obtained is based on fieldwork and examination of herbarium specimens. Thirty Lamiaceae species were recorded in RN, of which 16 are native to Brazil, nine are recorded for the first time for the state and one is new to science. The conservation assessments were based on IUCN geographic criteria: Area of Occurrence and Extension of Occurrence of each species. Among the native species, three were classified as Endangered, four as Vulnerable, three are of Least Concern, two are Near Threatened and four are Data Deficient. The highest number of Lamiaceae species, 14 altogether, is embraced by the phytogeographic domain Caatinga, a Seasonally Dry Tropical Forest, although less than 1% of this region is protected by conservation units. This study reveals the worrying conservation status of Lamiaceae in RN and the need for conservation actions, such as creating new conservation units and monitoring populations in the wild.
New occurrences of 10 species of angiosperms from Rio Grande do Norte state are reported. These data were collected by an environmental consultancy prior to the establishment of a wind farm. These records demonstrate the presence of knowledge gaps in the Caatinga flora of the state and show how an environmental consultancy can positively contribute towards the documentation of biodiversity in areas prior to their modification by human activities. In particular, at a time when the Brazilian Congress is discussing the elimination of environmental studies for licensing new developments, these new occurrence data highlight the importance of environmental studies.
Abstract— Hyptidinae, ca. 400 species, is an important component of Neotropical vegetation formations. Members of the subtribe possess flowers arranged in variously modified bracteolate cymes and nutlets with an expanded areole and all share a unique explosive mechanism of pollen release, except for Asterohyptis. In a recent phylogenetic study, the group had its generic delimitations rearranged with the recognition of 19 genera in the subtribe. Although the previous phylogenetic analysis covered almost all the higher taxa in the subtribe, it lacked a broader sampling at the species level. Here we present a new expanded phylogenetic analysis for the subtribe comprising 153 accessions of Hyptidinae sequenced for the nuclear nrITS, nrETS, and waxy regions and the plastid markers trnL-F, trnS-G, trnD-T, and matK. Our results widely support the previous phylogenetic results with some changes in the support and relationship between genera. It also uncovers the need for a new combination of Eriope machrisae in Hypenia and the phylogenetic position of Hyptis sect. Rhytidea, which was demonstrated to be part of Mesosphaerum. The generic delimitation in Hyptidinae is discussed, and we recommend that further studies with more markers are needed to confirm the monophyly of Hyptidendron and Mesosphaerum, as well as to support taxonomic changes on the infrageneric delimitation within Hyptis s. s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.