This paper investigates an ordered partial matching alignment problem, in which the goal is to align two sequences in the presence of potentially non-matching regions. We propose a novel parameter-free dynamic programming alignment method called hidden state time warping that allows an alignment path to switch between two different planes: a “visible” plane corresponding to matching sections and a “hidden” plane corresponding to non-matching sections. By defining two distinct planes, we can allow different types of time warping in each plane (e.g., imposing a maximum warping factor in matching regions while allowing completely unconstrained movements in non-matching regions). The resulting algorithm can determine the optimal continuous alignment path via dynamic programming, and the visible plane induces a (possibly) discontinuous alignment path containing matching regions. We show that this approach outperforms existing parameter-free methods on two different partial matching alignment problems involving speech and music.
This paper studies the problem of identifying piano music in various modalities using a single, unified approach called marketplace fingerprinting. The key defining characteristic of marketplace fingerprinting is choice: we consider a broad range of fingerprint designs based on a generalization of standard n-grams, and then select the fingerprint designs at runtime that are best for a specific query. We show that the large-scale retrieval problem can be framed as an economics problem in which a consumer and a store interact. In our analogy, the runtime search is like a consumer shopping in the store, the items for sale correspond to fingerprints, and purchasing an item corresponds to doing a fingerprint lookup in the database. Using basic principles of economics, we design an efficient marketplace in which the consumer has many options and adopts a rational buying strategy that explicitly considers the cost and expected utility of each item. We evaluate our marketplace fingerprinting approach on four different sheet music retrieval tasks involving sheet music images, MIDI files, and audio recordings. Using a database containing approximately 375,000 pages of sheet music, our method is able to achieve 0.91 mean reciprocal rank with sub-second average runtime on cell phone image queries. On all four retrieval tasks, the marketplace method substantially outperforms previous methods while simultaneously reducing average runtime. We present comprehensive experimental results, as well as detailed analyses to provide deeper intuition into system behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.