Foreign travel has been suggested to be a risk factor for the acquisition of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. To our knowledge, this has not previously been demonstrated in a prospective study. Healthy volunteers traveling outside Northern Europe were enrolled. Rectal swabs and data on potential travel-associated risk factors were collected before and after traveling. A total of 105 volunteers were enrolled. Four of them did not complete the study, and one participant carried ESBL-producing Escherichia coli before travel. Twenty-four of 100 participants with negative pretravel samples were colonized with ESBL-producing Escherichia coli after the trip. All strains produced CTX-M enzymes, mostly CTX-M-15, and some coproduced TEM or SHV enzymes. Coresistance to several antibiotic subclasses was common. Travel to India was associated with the highest risk for the acquisition of ESBLs (88%; n ؍ 7). Gastroenteritis during the trip was an additional risk factor (P ؍ 0.003). Five of 21 volunteers who completed the follow-up after 6 months had persistent colonization with ESBLs. This is the first prospective study demonstrating that international travel is a major risk factor for colonization with ESBL-producing Enterobacteriaceae. Considering the high acquisition rate of 24%, it is obvious that global efforts are needed to meet the emergence and spread of CTX-M enzymes and other antimicrobial resistances.
Extended Spectrum β-Lactamase (ESBL) producing Enterobacteriaceae started to appear in the 1980s, and have since emerged as some of the most significant hospital-acquired infections with Escherichia coli and Klebsiella being main players. More than 100 different ESBL types have been described, the most widespread being the CTX-M β-lactamase enzymes (bla
CTX-M genes). This study focuses on the zoonotic dissemination of ESBL bacteria, mainly CTX-M type, in the southern coastal region of France. We found that the level of general antibiotic resistance in single randomly selected E. coli isolates from wild Yellow-legged Gulls in France was high. Nearly half the isolates (47,1%) carried resistance to one or more antibiotics (in a panel of six antibiotics), and resistance to tetracycline, ampicillin and streptomycin was most widespread. In an ESBL selective screen, 9,4% of the gulls carried ESBL producing bacteria and notably, 6% of the gulls carried bacteria harboring CTX-M-1 group of ESBL enzymes, a recently introduced and yet the most common clinical CTX-M group in France. Multi locus sequence type and phylogenetic group designations were established for the ESBL isolates, revealing that birds and humans share E. coli populations. Several ESBL producing E. coli isolated from birds were identical to or clustered with isolates with human origin. Hence, wild birds pick up E. coli of human origin, and with human resistance traits, and may accordingly also act as an environmental reservoir and melting pot of bacterial resistance with a potential to re-infect human populations.
The plasmid pUUH239.2 is a composite of the pKPN3 K. pneumoniae plasmid backbone and the bla(CTX-M-15)-encoding multiresistance cassette associated with the internationally recognized outbreak strain E. coli ST131. The resulting plasmid differs in stability between K. pneumoniae and E. coli, and this has probably limited the spread of this plasmid during the outbreak.
Multidrug resistance was found in 22.7% of Escherichia coli isolates from bird samples in Bangladesh; 30% produced extended-spectrum β-lactamases, including clones of CTX-M genes among wild and domestic birds. Unrestricted use of antimicrobial drugs in feed for domestic birds and the spread of resistance genes to the large bird reservoir in Bangladesh are growing problems.
The finding of CTX-M-type ESBLs in E. coli isolated from black-headed gulls in Sweden, where 'background resistance' is low, is consistent with an ongoing environmental spread of these plasmid-borne resistance genes. The results indicate that a potential for transfer between the human population and environment exists even in countries with a low level of antibiotic resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.