The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system’s capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.
Passive radars utilising illuminators of opportunity are being actively studied in the field of radar. In the last few years, many illuminator sources have been employed for passive radar applications. However, there have been no published results on the use of the long‐term evolution (LTE) signal as a novel source for passive radar applications. For the first time an experimental investigation into the feasibility of LTE‐based passive radars for detecting a moving target is presented. A theoretical analysis was conducted on a captured LTE signal in the atmosphere. This was then followed by a field experiment. The preliminary results show that the LTE signal is capable of being an illuminator for passive radars.
Recently, there has been an evolution of mobile networks towards the fourth generation radio wireless communications (4G) as LTE (Long Term Evolution). In this paper, the feasibility of using LTE-based passive radar is investigated to take advantage of using LTE signal as illuminator of opportunity for moving object monitoring. An analysis of ambiguity function is done on a typical LTE waveform to assess the Doppler and range characteristics. The initial results and analysis show that LTE signal range and Doppler resolutions of 7.5m and 0.11m/s can be achieved, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.