This paper proposes a general physics-based model for identifying the parasitic capacitance in medium-voltage (MV) filter inductors, which can provide analytical calculations without using empirical equations and is not restricted by the geometrical structures of inductors. The elementary capacitances of the MV inductor are identified, then the equivalent capacitances between the two terminals of the inductor are derived under different voltage potential on the core. Further, a three-terminal equivalent circuit, instead of the conventional two-terminal equivalent circuit, is proposed by using the derived capacitances. Thus, the parasitic equivalent capacitance between the terminals and core are explicitly quantified. Experimental measurements for parasitic capacitances show a good agreement with the theoretical calculations.
Index terms-Physics-based modeling, parasitic capacitance, medium-voltage, filter inductors, three-terminal equivalent circuit.This work is supported by MV-BASIC project (https://www.mvbasic.et.aau.dk/), which is co-funded by the
New packaging solutions and power module structures are required to fully utilize the benefits of emerging commercially available wide bandgap semiconductor devices. Conventional packaging solutions for power levels of a few kilowatt are bulky, meaning important gate driver and measurement circuitry are not properly integrated. This paper presents a fast-switching integrated power module based on gallium nitride enhancementmode high-electron-mobility transistors, which is easier to manufacture compared with other hybrid structures. The structure of the proposed power module is presented, and the design of its gate driver circuit and board layout structure is discussed. The thermal characteristics of the designed power module are evaluated using COMSOL Multiphysics. An ANSYS Q3D Extractor is used to extract the parasitics of the designed power module, and is included in simulation models of various complexities. The simulation model includes the SPICE model of the gallium nitride devices, and parasitics of components are included by experimentally characterizing them up to 2 GHz. Finally, the designed power module is tested experimentally, and its switching characteristics cohere with the results of the simulation model. The experimental results show a maximum achieved switching transient of 64 V/ns and verify the power loop inductance of 2.65 nH.
Support has been received from the IEPE and APETT projects funded by Innovation Fund Denmark and the MV platform project funded by the Obel Family Foundation.
This paper characterizes three parasitic capacitances in copper-foiled medium-voltage inductors. It is found that the conventional modeling method overlooks the effect of the fringe field, which leads to inaccurate modeling of parasitic capacitances in copper-foiled inductors. To address this problem, the parasitic capacitances contributed by the fringe electrical field is identified first, and a physics-based analytical modeling method for the parasitic capacitances contributed by the fringe electrical field is proposed, which avoids using any empirical equations. The total parasitic capacitances are then derived for three different cases with three different core potentials, from which a three-terminal equivalent circuit is derived, and thus, the parasitic capacitances in copper-foiled inductors are explicitly identified. The calculated results show a close agreement with the measured capacitance by using an impedance analyzer. Two recommendations for reducing the parasitic capacitances in copper-foiled inductors are given in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.