In four experiments, we tested whether sustained visual attention is required for the selective maintenance of objects in VWM. Participants performed a color change-detection task. During the retention interval, a valid cue indicated the item that would be tested. Change detection performance was higher in the valid-cue condition than in a neutral-cue control condition. To probe the role of visual attention in the cuing effect, on half of the trials, a difficult search task was inserted after the cue, precluding sustained attention on the cued item. The addition of the search task produced no observable decrement in the magnitude of the cuing effect. In a complementary test, search efficiency was not impaired by simultaneously prioritizing an object for retention in VWM. The results demonstrate that selective maintenance in VWM can be dissociated from the locus of visual attention.
Attention operates to select both spatial locations and perceptual objects. However, the specific mechanism by which attention is oriented to objects is not well understood. We examined the means by which object structure constrains the distribution of spatial attention (i.e., a “grouped array”). Using a modified version of the Egly et al. object cuing task, we systematically manipulated within-object distance and object boundaries. Four major findings are reported: 1) spatial attention forms a gradient across the attended object; 2) object boundaries limit the distribution of this gradient, with the spread of attention constrained by a boundary; 3) boundaries within an object operate similarly to across-object boundaries: we observed object-based effects across a discontinuity within a single object, without the demand to divide or switch attention between discrete object representations; and 4) the gradient of spatial attention across an object directly modulates perceptual sensitivity, implicating a relatively early locus for the grouped array representation.
The serial and spatially extended nature of many real-world visual tasks suggests the need for control over the content of VWM. We examined the management of VWM in a task that required participants to prioritize individual objects for retention during scene viewing. There were five principal findings: 1) Strategic retention of task relevant-objects was effective and was dissociable from the current locus of visual attention; 2) strategic retention was implemented by protection from interference rather than by preferential encoding; 3) this prioritization was flexibly transferred to a new object as task demands changed; 4) no-longer-relevant items were efficiently eliminated from VWM; and 5) despite this level of control, attended and fixated objects were consolidated into VWM regardless of task relevance. These results are consistent with a model of VWM control in which each fixated object is automatically encoded into VWM, replacing a portion of the content in VWM. However, task-relevant objects can be selectively protected from replacement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.