The development of farming was a catalyst for the evolution of the human diet from the varied subsistence practices of hunter-gatherers to the more globalised food economy we depend upon today. Although there has been considerable research into the dietary changes associated with the initial spread of farming, less attention has been given to how dietary choices continued to develop during subsequent millennia. A paleogenomic time transect for 5 millennia of human occupation in the Great Hungarian Plain spanning from the advent of the Neolithic to the Iron Age, showed major genomic turnovers. Here we assess where these genetic turnovers are associated with corresponding dietary shifts, by examining the carbon and nitrogen stable isotope ratios of 52 individuals. Results provide evidence that early Neolithic individuals, which were genetically characterised as Mesolithic hunter-gatherers, relied on wild resources to a greater extent than those whose genomic attributes were of typical Neolithic European farmers. Other Neolithic individuals and those from the Copper Age to Bronze Age periods relied mostly on terrestrial C3 plant resources. We also report a carbon isotopic ratio typical of C4 plants, which may indicate millet consumption in the Late Bronze Age, despite suggestions of the crop’s earlier arrival in Europe during the Neolithic.
Recent technological advances have broadened the application of palaeoradiology for non-destructive investigation of ancient remains. X-ray microtomography (microCT) in particular is increasingly used as an alternative to histological bone sections for interpreting pathological alterations, trauma, microstructure, and, more recently, bioerosion with direct or ancillary use of histological indices. However, no systematic attempt has been made to confirm the reliability of microCT for histotaphonomic analysis of archaeological bone. The objective of this study is therefore to compare thin sections of human femora rated with the Oxford Histological Index to microCT sections using the newly developed Virtual Histological Index in order to provide an accessible methodology for the evaluation of bioerosion in archaeological bone. We provide detailed descriptions of virtual sections and assess the efficacy of the method on cranial and postcranial elements, cremated long bones, and faunal samples. The traditional histological and virtual methods showed a strong correlation, providing the first systematic data substantiating lab-based microCT as a suitable alternative tool for reconstructing post-mortem history in the archaeological record, and for the reliable, non-destructive screening of samples for further analyses.
Dietary reconstruction is used to make inferences about the subsistence strategies of ancient human populations, but it may also serve as a proxy to characterise their diverse cultural and technological manifestations. Dental microwear and stable isotope analyses have been shown to be successful techniques for paleodietary reconstruction of ancient populations but, despite yielding complementary dietary information, these techniques have rarely been combined within the same study. Here we present for the first time a comprehensive approach to interpreting ancient lifeways through the results of buccal and occlusal microwear, and δ13C and δ15N isotope analyses applied to the same individuals of prehistoric populations of Hungary from the Middle Neolithic to the Late Bronze Age periods. This study aimed to (a) assess if the combination of techniques yields a more precise assessment of past dietary and subsistence practices, and (b) contribute to our understanding of the dietary patterns of the prehistoric Hungarian populations. Overall, no correlations between microwear and δ13C and δ15N isotope variables were observed, except for a relationship between nitrogen and the vertical and horizontal index. However, we found that diachronic differences are influenced by the variation within the period. Particularly, we found differences in microwear and isotope variables between Middle Neolithic sites, indicating that there were different dietary practices among those populations. Additionally, microwear results suggest no changes in the abrasiveness of the diet, neither food processing methods, despite higher C4 plant resource consumption shown by carbon isotopic signal. Thus, we demonstrate that the integration of dental microwear and carbon and nitrogen stable isotope methodologies can provide complementary information for making inferences about paleodietary habits.
Recent advances have broadened the application of palaeoradiology for non-destructive investigation of ancient remains. X-ray microtomography (microCT) in particular is increasingly used as an alternative to histological bone sections for interpreting pathological alterations, trauma, microstructure, and more recently bioerosion with direct or ancillary use of histological indices. However, no systematic attempt has been made to confirm the reliability of microCT for histotaphonomic analysis of archaeological bone. The objectives of this study are therefore to (1) compare thin sections of human femora rated with the Oxford Histological Index to microCT sections using a newly developed Virtual Histological Index, and (2) provide an accessible methodology for the evaluation and visualization of bioerosion in archaeological bone using virtual anthropology techniques. We provide detailed descriptions of virtual sections and volume renderings, and also assess the efficacy of the method on cranial and postcranial elements, cremated long bones, and faunal samples. Furthermore, the need for time-consuming image segmentation is reduced by applying two noise-reducing, edge-preserving filters, and rendering with a colormap chosen to visualize bioerosion along with canal structure and density in 3D. The histological and virtual methods showed a strong correlation, providing the first systematic data substantiating lab-based microCT as a suitable alternative tool for reconstructing post-mortem history in the archaeological record, and for the reliable, non-destructive screening of samples for further analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.