In this work the suitability of selected commercially available hyperbranched polymers and ionic liquids as entrainers for the extractive distillation and as extraction solvents for the liquid–liquid extraction is investigated. Based on thermodynamic studies on the influence of hyperbranched polymers and ionic liquids on the vapor–liquid and liquid–liquid equilibrium of the azeotropic ethanol–water and THF–water systems, process simulations are carried out, which allow evaluating the potential of hyperbranched polymers and ionic liquids as selective components for the mentioned applications in terms of feasibility and energetic efficiency. Both hyperbranched polymers and ionic liquids break a variety of azeotropic systems. Since their selectivity, capacity, viscosity, and thermal stability can be customized, they appear superior to many conventional entrainers and extraction solvents. For the ethanol–water separation, the nonvolatile substances hyperbranched polyglycerol and [EMIM]+[BF4]− show a remarkable entrainer performance and therefore enable extractive distillation processes, which require less energy than the conventional process using 1,2‐ethanediol as an entrainer. Evaluation of a new THF–water separation process indicates the competitiveness of the suggested process and a considerable potential of using hyperbranched polymers as extraction solvents. © 2004 American Institute of Chemical Engineers AIChE J 50: 2439–2454, 2004
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.