Impaired gait is a common sequela in bilateral spastic cerebral palsy. We compared the effects of two novel research interventions—transcranial direct current stimulation and virtual reality—on spatiotemporal and kinetic gait impairments in children with bilateral spastic CP. Forty participants were randomized to receive either transcranial direct current stimulation or virtual reality training. Both groups received standard-of-care gait therapy during the assigned intervention and for the subsequent 10 weeks afterward. Spatiotemporal and kinetic gait parameters were evaluated at three different times: (i) before starting the intervention, (ii) after two weeks of intervention, and (iii) 10 weeks after intervention completion. Both groups exhibited higher velocity and cadence, as well as longer stance time, step length, and stride length after intervention (p < 0.001). Only the transcranial direct current stimulation group exhibited increased maximum force and maximum peak pressure after intervention (p’s ≤ 0.001), with continued improvements in spatiotemporal parameters at follow-up. The transcranial direct current stimulation group had higher gait velocities, stride length, and step length at follow-up compared to the virtual reality group (p ≤ 0.02). These findings suggest that transcranial direct current stimulation has a broader and longer-lasting effect on gait than virtual reality training for children with bilateral spastic cerebral palsy.
Background
The increasing prevalence of diabetes mellitus (DM) is one of the most challenging public health issues. The destruction of insulin-producing cells in the islets of Langerhans is the hallmark of type 1 diabetes mellitus (T1DM) as an autoimmune disease. In the current case–control study, the role of single nucleotide polymorphisms (SNPs) was investigated within the programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) inhibitory axis and their association with T1DM susceptibility in a sample of Egyptian pediatric patients. The study included 80 T1DM pediatric patients and 76 healthy control subjects. The patients were recruited from Beni-Suef University Hospital’s Pediatric Endocrinology Outpatient Clinic. Genotyping of PD-1 SNP (rs 34819629) and PD-L1 SNPs (rs 2297137 and rs 4143815) was performed by TaqMan allelic discrimination technique via real-time polymerase chain reaction (RT-PCR). The patients were subjected to a thorough clinical examination and history taking.
Result
Genotyping of PD-1 (rs 34819629) revealed that all of the enrolled patients and the control group inherited the same genotype (GG genotype). With regard to PDL-1 rs4143815 SNP and the risk of T1DM occurrence, our comparison did not reveal the presence of an association between the different genetic models (general, dominant, and recessive) of the SNP and the risk of T1DM (p = 0.078 and p = 0.055; for the general genetic model, p = 0.061 and p = 0.169 for the dominant and the recessive types, respectively). Regarding PDL-1 rs2297137 SNP, the results of this study demonstrated that the risk of T1DM was significantly associated with the recessive genetic model (p = 0.007) as the diabetic group’s predominant G allele was higher compared to the control group.
Conclusion
The findings obtained supported the hypothesis that the predominant G allele of PD-L1 rs2297137 is associated with the development of T1DM. Chronic hyperglycemia and long-standing diabetes problems are linked to both PD-L1 SNPs (rs4143815 and rs2297137). Future studies with a more significant number of patients are required to support our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.