The purpose of this study is to explore the potential of using a general purpose CFD code to compute the characteristics of the flow field, and of the heat transfer augmentation in conduits with corrugated walls, encountered in commercial plate heat exchangers (PHE). The CFD code is used to simulate the performance of a PHE model comprised of stainless steel plates, following a herringbone design and assembled for single-pass countercurrent flow. The code is validated by comparing the numerical results with experimental data on pressure drop and overall temperature differences acquired for the countercurrent flow of water at both sides of the model PHE. The limited data published in the literature are also in fairly good agreement with the results of the present study. It is shown that the CFD code is an effective and reliable tool for studying the effect of various geometrical configurations on the optimum design of a PHE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.