Loss of vision due to corneal disease is a significant problem worldwide. Transplantation of donor corneas is a viable treatment option but limitations such as short supply and immune-related complications call for alternative options for the treatment of corneal disease. A tissue engineering-based approach using a collagen scaffold is a promising alternative to develop a bioengineered cornea that mimics the functionality of native cornea. In this study, an electrochemical compaction method was employed to synthesize highly dense and transparent collagen matrices. We hypothesized that chemical crosslinking of electrochemically compacted collagen (ECC) matrices will maintain transparency, improve stability, and enhance the mechanical properties of the matrices to the level of native cornea. Further, we hypothesized that keratocyte cell viability and proliferation will be maintained on crosslinked ECC matrices. The results indicated that uncrosslinked and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-N-hydroxysuccinimide (EDC-NHS) crosslinked ECC matrices were highly transparent with light transmission measurements comparable to native cornea. Stability tests showed that while the uncrosslinked ECC matrices degraded within 6 h when treated with collagenase, EDC-NHS or genipin crosslinking significantly improved the stability of ECC matrices (192 h for EDC-NHS and 256 h for genipin). Results from the mechanical tests showed that both EDC-NHS and genipin crosslinking significantly improved the strength and modulus of ECC matrices. Cell culture studies showed that keratocyte cell viability and proliferation are maintained on EDC-NHS crosslinked ECC matrices. Overall, results from this study suggest that ECC matrices have the potential to be developed as a functional biomaterial for corneal repair and regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.