Climate influences a variety of ecological processes. These effects operate through local weather parameters such as temperature, wind, rain, snow, and ocean currents, as well as interactions among these. In the temperate zone, local variations in weather are often coupled over large geographic areas through the transient behavior of atmospheric planetary-scale waves. These variations drive temporally and spatially averaged exchanges of heat, momentum, and water vapor that ultimately determine growth, recruitment, and migration patterns. Recently, there have been several studies of the impact of large-scale climatic forcing on ecological systems. We review how two of the best-known climate phenomena-the North Atlantic Oscillation and the El Niño-Southern Oscillation-affect ecological patterns and processes in both marine and terrestrial systems.
Whereas the El Niñ o Southern Oscillation (ENSO) affects weather and climate variability worldwide, the North Atlantic Oscillation (NAO) represents the dominant climate pattern in the North Atlantic region. Both climate systems have been demonstrated to considerably influence ecological processes. Several other large-scale climate patterns also exist. Although less well known outside the field of climatology, these patterns are also likely to be of ecological interest. We provide an overview of these climate patterns within the context of the ecological effects of climate variability. The application of climate indices by definition reduces complex space and time variability into simple measures, 'packages of weather'. The disadvantages of using global climate indices are all related to the fact that another level of problems are added to the ecology-climate interface, namely the link between global climate indices and local climate. We identify issues related to: (i) spatial variation; (ii) seasonality; (iii) non-stationarity; (iv) nonlinearity; and (v) lack of correlation in the relationship between global and local climate. The main advantages of using global climate indices are: (i) biological effects may be related more strongly to global indices than to any single local climate variable; (ii) it helps to avoid problems of model selection; (iii) it opens the possibility for ecologists to make predictions; and (iv) they are typically readily available on Internet.
Online enhancements: appendixes. Dryad data: http://dx.doi.org/10.5061/dryad.3hr2c. abstract:The forage-maturation hypothesis (FMH) states that herbivores migrate along a phenological gradient of plant development in order to maximize energy intake. Despite strong support for the FMH, the actual relationship between plant phenology and ungulate movement has remained enigmatic. We linked plant phenology (MODISnormalized difference vegetation index [NDVI] data) and space use of 167 migratory and 78 resident red deer (Cervus elaphus), using a space-time-time matrix of "springness," defined as the instantaneous rate of green-up. Consistent with the FMH, migrants experienced substantially greater access to early plant phenology than did residents. Deer were also more likely to migrate in areas where migration led to greater gains in springness. Rather than "surfing the green wave" during migration, migratory red deer moved rapidly from the winter to the summer range, thereby "jumping the green wave." However, migrants and, to a lesser degree, residents did track phenological green-up through parts of the growing season by making smaller-scale adjustments in habitat use. Despite pronounced differences in their life histories, we found only marginal differences between male and female red deer in this study. Those differences that we did detect pointed toward additional constraints on female space-use tactics, such as those posed by calving and caring for dependent offspring. We conclude that whereas in some systems migration itself is a way to surf the green wave, in others it may simply be a means to reconnect with phenological spring at the summer range. In the light of ubiquitous anthropogenic environmental change, understanding the relationship between the green wave and ungulate space use has important consequences for the management and conservation of migratory ungulates and the phenomenon of migration itself.
Animals selecting habitats often have to consider many factors, e.g., food and cover for safety. However, each habitat type often lacks an adequate mixture of these factors. Analyses of habitat selection using resource selection functions (RSFs) for animal radiotelemetry data typically ignore trade-offs, and the fact that these may change during an animal's daily foraging and resting rhythm on a short-term basis. This may lead to changes in the relative use of habitat types if availability differs among individual home ranges, called functional responses in habitat selection. Here, we identify such functional responses and their underlying behavioral mechanisms by estimating RSFs through mixed-effects logistic regression of telemetry data on 62 female red deer (Cervus elaphus) in Norway. Habitat selection changed with time of day and activity, suggesting a trade-off in habitat selection related to forage quantity or quality vs. shelter. Red deer frequently used pastures offering abundant forage and little canopy cover during nighttime when actively foraging, while spending much of their time in forested habitats with less forage but more cover during daytime when they are more often inactive. Selection for pastures was higher when availability was low and decreased with increasing availability. Moreover, we show for the first time that in the real world with forest habitats also containing some forage, there was both increasing selection of pastures (i.e., not proportional use) and reduced time spent in pastures (i.e., not constant time use) with lowered availability of pastures within the home range. Our study demonstrates that landscape-level habitat composition modifies the trade-off between food and cover for large herbivorous mammals. Consequently, landscapes are likely to differ in their vulnerability to crop damage and threat to biodiversity from grazing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.