Multipotent mesenchymal stem cells maintain the ability to differentiate into adipogenic, chondrogenic, or osteogenic cell lineages. There is increasing concern that exposure to environmental agents such as aryl hydrocarbon receptor (AhR) ligands, may perturb the osteogenic pathways responsible for normal bone formation. The objective of the current study was to evaluate the potential of the prototypic AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to disrupt osteogenic differentiation of human bone-derived mesenchymal stem cells (hBMSCs) in vitro. Primary hBMSCs from three donors were exposed to 10 nM TCDD and differentiation was interrogated using select histological, biochemical, and transcriptional markers of osteogenesis. Exposure to 10 nM TCDD resulted in an overall consistent attenuation of alkaline phosphatase (ALP) activity and matrix mineralization at terminal stages of differentiation in primary hBMSCs. At the transcriptional level, the transcriptional regulator DLX5 and additional osteogenic markers (ALP, OPN, and IBSP) displayed attenuated expression; conversely, FGF9 and FGF18 were consistently upregulated in each donor. Expression of stem cell potency markers SOX2, NANOG, and SALL4 decreased in the osteogenic controls, while expression in TCDD-treated cells resembled that of undifferentiated cells. Co-exposure with the AhR antagonist GNF351 blocked TCDD-mediated attenuation of matrix mineralization, and either fully or partially rescued expression of genes associated with osteogenic regulation, ECM, and/or maintenance of multipotency. Thus, experimental evidence from this study suggests that AhR transactivation likely attenuates osteoblast differentiation in multipotent hBMSCs. This study also underscores the use of primary human MSCs to evaluate osteoinductive or osteotoxic potential of chemical and pharmacologic agents in vitro.
Selenium (Se) trafficking in oviparous species remains understudied and a major source of uncertainty in developing sound Se regulations. Here, we utilized (75)Se to follow Se through a simulated natural food chain (water, periphyton, mayflies (Centroptilum triangulifer), fish (Japanese medaka)). We specifically examined Se assimilation efficiency, tissue distribution, efflux rate, and maternal transfer in medaka. Selenium assimilation efficiency (AE) averaged 63.2 ± 8.8% from mayfly diets and was not affected by mayfly [Se] across a dietary range of 5.6-38.7 μg g(-1) (dry wt). However, AE decreased significantly as mayfly larva size increased. Efflux rate constants (ke) were consistent between reproductively inactive (0.066 d(-1)) and spawning females (0.069 d(-1)). Total Se loss rate constant (ke+egg; efflux and egg deposition) was 0.17 d(-1) in spawning females. Interestingly, medaka appeared to rapidly shuttle Se to their eggs directly from their diet via the ovary, as opposed to mobilization from surrounding tissues, resulting in dynamic egg [Se] that was more attributable to recent dietary Se ingestion than female whole body [Se] in this asynchronous spawning fish. Spawning strategy likely plays a large role in the process of fish egg Se deposition and requires further attention to understand risk and toxicity of Se to fish.
Recent studies from mammalian, fish, and in vitro models have identified bone and cartilage development as sensitive targets for dioxins and other aryl hydrocarbon receptor ligands. In this study, we assess how embryonic 2,3,7,8-tetrachlorochlorodibenzo-p-dioxin (TCDD) exposure impacts axial osteogenesis in Japanese medaka (Oryzias latipes), a vertebrate model of human bone development. Embryos from inbred wild-type Orange-red Hd-dR and 3 transgenic medaka lines (twist:EGFP, osx/sp7:mCherry, col10a1:nlGFP) were exposed to 0.15 nM and 0.3 nM TCDD and reared until 20 dpf. Individuals were stained for mineralized bone and imaged using confocal microscopy to assess skeletal alterations in medial vertebrae in combination with a qualitative spatial analysis of osteoblast and osteoblast progenitor cell populations. Exposure to TCDD resulted in an overall attenuation of vertebral ossification characterized by truncated centra, and reduced neural and hemal arch lengths. Effects on mineralization were consistent with modifications in cell number and cell localization of transgene-labeled osteoblast and osteoblast progenitor cells. Endogenous expression of osteogenic regulators runt-related transcription factor 2 (runx2) and osterix (osx/sp7), and extracellular matrix genes osteopontin (spp1), collagen type I alpha I (col1), collagen type X alpha I (col10a1), and osteocalcin (bglap/osc) was significantly diminished at 20 dpf following TCDD exposure as compared with controls. Through global transcriptomic analysis more than 590 differentially expressed genes were identified and mapped to select pathological states including inflammatory disease, connective tissue disorders, and skeletal and muscular disorders. Taken together, results from this study suggest that TCDD exposure inhibits axial bone formation through dysregulation of osteoblast differentiation. This approach highlights the advantages and sensitivity of using small fish models to investigate how xenobiotic exposure may impact skeletal development.
Sulfolane is a solvent used in the petrochemical industry and a groundwater contaminant in areas near refineries. The current studies were conducted to assess the impact of oral exposure to sulfolane on the immune system using two models: (1) a perinatal drinking water exposure to 0, 30, 100, 300, or 1000 mg/ L from gestation day (GD) 6 until $13 weeks-of-age in Harlan Sprague Dawley rats; and, (2) a 90-day gavage exposure of adult female B6C3F1/N mice to 0, 1, 10, 30, 100, or 300 mg/kg/day. Immune parameters evaluated included measurement of antibody production against sheep red blood cells (SRBC) and keyhole limpet hemocyanin (KLH), ex vivo measurements of natural killer (NK) cell activity, cytotoxic T-cell (CTL) activity, and T-cell proliferation, as well as measures of splenic immune cell populations, hematological parameters, and histopathology of immune tissues. A decrease in ex vivo NK cell activity was observed in cells from femalebut not male -F1 rats following developmental exposure. In adult female mice, splenic NK cell number was lower than the vehicle controls at doses ! 100 mg/kg; however, ex vivo NK cell activity was not affected by sulfolane treatment. In female mice, a decrease in the number of large unstained cells at doses ! 30 mg/kg was observed. In F1 rats, effects on white blood cells (WBC) were limited to a decreasing trend in leukocytes in females; no effects were observed in males. Under the conditions of this study, a no-observed-effect level (NOEL) of 3 mg/kg/day was identified based on reduced NK cell activity in female F1 rats. Overall, these findings suggest that oral exposure to sulfolane in rodents had minimal effects on the immune system.
Differentiation of multipotent mesenchymal stem cells into bone-forming osteoblasts requires strict coordination of transcriptional pathways. Aryl hydrocarbon receptor (AhR) ligands, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), have been shown to alter osteoblast differentiation in vitro and bone formation in multiple developmental in vivo models. The goal of the present study was to establish a global transcriptomic landscape during early, intermediate, and apical stages of osteogenic differentiation in vitro in response to TCDD exposure. Human bone-derived mesenchymal stem cells (hBMSC) were cultured in growth media (GM), osteogenic differentiation media (ODM), or osteogenic differentiation media containing 10 nM TCDD (ODM+TCDD), thus enabling a comparison of the transcriptomic profiles of undifferentiated, differentiated, and differentiated -TCDD-exposed hBMSCs, respectively. In this test system, exposure to TCDD attenuated differentiation of hBMSCs into osteoblasts as evidenced by reduced alkaline phosphatase activity and mineralization. At various timepoints, we observed altered expression of genes that play a role in the Wnt, FGF, BMP/TGF-β developmental pathways, as well as pathways related to extracellular matrix organization and deposition. Reconstruction of gene regulatory networks with the iDREM analysis revealed modulation of transcription factors (TF) including POLR3G, NR4A1, RDBP, GTF2B, POU2F2 and ZEB1, which may putatively influence osteoblast differentiation and the requisite deposition and mineralization of bone extracellular matrix. We demonstrate that the combination of RNA-Seq data in conjunction with the iDREM regulatory model, captures the transcriptional dynamics underlying mesenchymal stem cell differentiation under different conditions in vitro. Model predictions are consistent with existing knowledge and provides a new tool to identify novel pathways and transcription factors that may facilitate a better understanding of the osteoblast differentiation process, perturbation by exogenous agents, and potential intervention strategies targeting those specific pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.