Serotonergic antidepressant drugs have been commonly used to treat mood and anxiety disorders, and increasing evidence suggests potential use of these drugs beyond current antidepressant therapeutics. Facilitation of adult neurogenesis in the hippocampal dentate gyrus has been suggested to be a candidate mechanism of action of antidepressant drugs, but this mechanism may be only one of the broad effects of antidepressants. Here we show a distinct unique action of the serotonergic antidepressant fluoxetine in transforming the phenotype of mature dentate granule cells. Chronic treatments of adult mice with fluoxetine strongly reduced expression of the mature granule cell marker calbindin. The fluoxetine treatment induced active somatic membrane properties resembling immature granule cells and markedly reduced synaptic facilitation that characterizes the mature dentate-to-CA3 signal transmission. These changes cannot be explained simply by an increase in newly generated immature neurons, but best characterized as "dematuration" of mature granule cells. This granule cell dematuration developed along with increases in the efficacy of serotonin in 5-HT 4 receptor-dependent neuromodulation and was attenuated in mice lacking the 5-HT 4 receptor. Our results suggest that serotonergic antidepressants can reverse the established state of neuronal maturation in the adult hippocampus, and up-regulation of 5-HT 4 receptor-mediated signaling may play a critical role in this distinct action of antidepressants. Such reversal of neuronal maturation could affect proper functioning of the mature hippocampal circuit, but may also cause some beneficial effects by reinstating neuronal functions that are lost during development. dentate gyrus | development | mossy fiber | serotonin receptor | serotonin reuptake inhibitor
Neuronal damage in the somatosensory system causes intractable chronic neuropathic pain. Plastic changes in sensory neuron excitability are considered the cellular basis of persistent pain. Non-coding microRNAs modulate specific gene translation to impact on diverse cellular functions and their dysregulation causes various diseases. However, their significance in adult neuronal functions and disorders is still poorly understood. Here, we show that miR-7a is a key functional RNA sustaining the late phase of neuropathic pain through regulation of neuronal excitability in rats. In the late phase of neuropathic pain, microarray analysis identified miR-7a as the most robustly decreased microRNA in the injured dorsal root ganglion. Moreover, local induction of miR-7a, using an adeno-associated virus vector, in sensory neurons of injured dorsal root ganglion, suppressed established neuropathic pain. In contrast, miR-7a overexpression had no effect on acute physiological or inflammatory pain. Furthermore, miR-7a downregulation was sufficient to cause pain-related behaviours in intact rats. miR-7a targeted the β2 subunit of the voltage-gated sodium channel, and decreased miR-7a associated with neuropathic pain caused increased β2 subunit protein expression, independent of messenger RNA levels. Consistently, miR-7a overexpression in primary sensory neurons of injured dorsal root ganglion suppressed increased β2 subunit expression and normalized long-lasting hyperexcitability of nociceptive neurons. These findings demonstrate miR-7a downregulation is causally involved in maintenance of neuropathic pain through regulation of neuronal excitability, and miR-7a replenishment offers a novel therapeutic strategy specific for chronic neuropathic pain.
Repetitive administration of ropivacaine into the epidural space in CCI rats exerts an analgesic effect, possibly by inducing a plastic change in the nociceptive circuit.
miR-17-92 is a microRNA cluster with six distinct members. Here, we show that the miR-17-92 cluster and its individual members modulate chronic neuropathic pain. All cluster members are persistently upregulated in primary sensory neurons after nerve injury. Overexpression of miR-18a, miR-19a, miR-19b and miR-92a cluster members elicits mechanical allodynia in rats, while their blockade alleviates mechanical allodynia in a rat model of neuropathic pain. Plausible targets for the miR-17-92 cluster include genes encoding numerous voltage-gated potassium channels and their modulatory subunits. Single-cell analysis reveals extensive co-expression of miR-17-92 cluster and its predicted targets in primary sensory neurons. miR-17-92 downregulates the expression of potassium channels, and reduced outward potassium currents, in particular A-type currents. Combined application of potassium channel modulators synergistically alleviates mechanical allodynia induced by nerve injury or miR-17-92 overexpression. miR-17-92 cluster appears to cooperatively regulate the function of multiple voltage-gated potassium channel subunits, perpetuating mechanical allodynia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.