Silicon (Si) photonics has recently emerged as a key enabling technology in many application fields thanks to the mature Si process technology, the large silicon wafer size, and promising Si optical properties. The monolithic integration by direct epitaxy of III–V lasers and Si photonic devices on the same Si substrate has been considered for decades as the main obstacle to the realization of dense photonics chips. Despite considerable progress in the last decade, only discrete III–V lasers grown on bare Si wafers have been reported, whatever the wavelength and laser technology. Here we demonstrate the first semiconductor laser grown on a patterned Si photonics platform with light coupled into a waveguide. A mid-IR GaSb-based diode laser was directly grown on a pre-patterned Si photonics wafer equipped with SiN waveguides clad by SiO2. Growth and device fabrication challenges, arising from the template architecture, were overcome to demonstrate more than 10 mW outpower of emitted light in continuous wave operation at room temperature. In addition, around 10% of the light was coupled into the SiN waveguides, in good agreement with theoretical calculations for this butt-coupling configuration. This work lift an important building block and it paves the way for future low-cost, large-scale, fully integrated photonic chips.
Silicon (Si) photonics can have a major impact on the development of mid-IR photonics by leveraging on the reliable and high-volume fabrication technologies already developed for microelectronic integrated circuits. Germanium (Ge), already used in Si photonics, is a prime candidate to extend the operating wavelength of Group IV-based photonic integrated circuits beyond 8 µm, and potentially up to 15 µm. High performance quantum cascade lasers (QCLs) and interband cascade lasers grown on Si have been demonstrated, whereas no QCLs monolithically integrated on Ge have been reported yet. In this work, we present InAs-based QCLs directly grown on Ge by molecular beam epitaxy. The lasers emitting near 14 µm exhibited threshold current densities as low as 0.8-0.85 kA/cm2 at room temperature.
Silicon photonics can have a major impact on the advancement of mid-IR photonics by leveraging the mature and reliable high-volume fabrication technologies already developed for microelectronic integrated circuits. Germanium, already used in silicon photonics, is a promising material for increasing the operating wavelength of Group-IV-based photonic integrated circuits beyond 8 µm and potentially up to 15 µm. High-performance InAs-based quantum cascade lasers grown on Si have been previously reported. In this work, we present InAs-based QCLs directly grown on Ge. The lasers operate near 14 µm with pulsed threshold current densities as low as 0.8 kA/cm 2 at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.