SummaryBotulism is mainly acquired by the oral route, and botulinum neurotoxin (BoNT) escapes the gastrointestinal tract by crossing the digestive epithelial barrier prior to gaining access to the nerve endings.
Production of botulinum neurotoxin A (BoNT/A) and associated non-toxic proteins (ANTPs), which include a non-toxic non-haemagglutinin (NTNH/A) as well as haemagglutinins (HAs), was found previously to be dependent upon an RNA polymerase alternative sigma factor (BotR/A). Expression of the botR/A, bont/A and antp genes, monitored by reverse transcription and real-time PCR analysis, occurred concomitantly at the transition between the exponential and stationary growth phases of Clostridium botulinum A. The botR/A expression level was about 100-fold less than those of the bont/A and antp genes. Therefore, BotR/A is an alternative sigma factor controlling the botulinum A locus genes during the transition phase. The highest toxin concentration was released into the culture supernatant 12 h after maximum expression of the botR/A, bont/A and antp genes, without any apparent bacterial lysis. Toxin levels were then stable over 5 days in cultures at 37 6C, whereas a dramatic decrease in lethal activity was observed between 24 and 48 h in cultures at 44 6C. High temperature did inhibit transcription, since expression levels of the botR/A, bont/A and antp genes were similar in cultures at 37 and 44 6C. However, incubation at 44 6C triggered a calcium-dependent protease that degraded BoNT/A and NTNH/A, but not HAs. In C. botulinum E, which contains no gene related to botR, the bont/E and p47 genes were also expressed during the transition phase, and no protease activation at 44 6C was evident.
Respiratory tract infections such as flu cause severe morbidity and mortality and are among the leading causes of death in children and adults worldwide. Commensal microbiota is critical for orchestrating tissue homeostasis and immunity in the intestine. Probiotics represent an interesting source of immune modulators and several clinical studies have addressed the potential beneficial effects of probiotics against respiratory infections. Therefore, we have investigated the mechanisms of protection conferred by L. paracasei CNCM I-1518 strain in a mouse model of influenza infection. Notably, local myeloid cells accumulation is generated in the lungs after seven days feeding with L. paracasei prior to viral infection. L. paracasei-fed mice showed reduced susceptibility to the influenza infection, associated with less accumulation of inflammatory cells in the lungs, faster viral clearance and general health improvement. Interestingly, Allobaculum was significantly increased in L. paracasei-fed mice 7 days after influenza infection, even if the gut microbiota composition was not altered overall. L. paracasei-purified peptidoglycan partially recapitulated the protective phenotype observed with the entire bacteria. Collectively, our results demonstrate that oral consumption of L. paracasei CNCM I-1518 modulates lung immunity was associated with an improved control of influenza infection. These results further extend the beneficial role for certain lactobacilli to alleviate the burden of respiratory tract infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.