River basin rainfall series and extensive river flow records are used to characterize and improve understanding of spatial and temporal variability in sub-Saharan African water resources during the last century. Nine major international river basins were chosen for examination primarily for their extensive, good quality flow records. A range of statistical descriptors highlight the substantial variability in rainfall and river flows [e.g., differences in rainfall (flows) of up to −14% (−51%) between 1931–60 and 1961–90 in West Africa], the marked regional differences, and the modest intraregional differences. On decadal time scales, sub-Saharan Africa exhibits drying across the Sahel after the early 1970s, relative stability punctuated by extreme wet years in East Africa, and periodic behavior underlying high interannual variability in southern Africa. Central Africa shows very modest decadal variability, with some similarities to the Sahel in the adjoining basins. No consistent signals in rainfall and river flows emerge across the whole of the region. An analysis of rainfall–runoff relationships reveals varying behavior including strong but nonstationary relationships (particularly in West Africa); many basins with marked variations (temporal and spatial) in strength; weak, almost random behavior (particularly in southern Africa); and very few strong, temporally stable relationships. Twenty-year running correlations between rainfall and river flow tend to be higher during periods of greater rainfall station density; however, there are situations in which weak (strong) relationships exist even with reasonable (poor) station coverage. The authors conclude for sub-Saharan Africa that robust identification and attribution of hydrological change is severely limited by data availability, conflicting behavior across basins/regions, low signal-to-noise ratios, sometimes weak rainfall–runoff relationships, and limited quantification of the magnitude and effects of land use change.
International audienceThis study explores the decadal potential predictability of the Atlantic Meridional Overturning Circulation (AMOC) as represented in the IPSL-CM5A-LR model, along with the predictability of associated oceanic and atmospheric fields. Using a 1000-year control run, we analyze the prognostic potential predictability (PPP) of the AMOC through ensembles of simulations with perturbed initial conditions. Based on a measure of the ensemble spread, the modelled AMOC has an average predictive skill of 8 years, with some degree of dependence on the AMOC initial state. Diagnostic potential predictability of surface temperature and precipitation is also identified in the control run and compared to the PPP. Both approaches clearly bring out the same regions exhibiting the highest predictive skill. Generally, surface temperature has the highest skill up to 2 decades in the far North Atlantic ocean. There are also weak signals over a few oceanic areas in the tropics and subtropics. Predictability over land is restricted to the coastal areas bordering oceanic predictable regions. Potential predictability at interannual and longer timescales is largely absent for precipitation in spite of weak signals identified mainly in the Nordic Seas. Regions of weak signals show some dependence on AMOC initial state. All the identified regions are closely linked to decadal AMOC fluctuations suggesting that the potential predictability of climate arises from the mechanisms controlling these fluctuations. Evidence for dependence on AMOC initial state also suggests that studying skills from case studies may prove more useful to understand predictability mechanisms than computing average skill from numerous start dates
[1] Six coupled GCMs are assessed in terms of their ability to simulate observed characteristics of East African rainfall, the Indian Ocean dipole and their temporal correlation. Model results are then used to analyze the future behaviour of rainfall and the DMI. All models simulate reasonably well the spatial distribution and variability of annual and seasonal rainfall over the 1961 -1990 period. Model simulation of observed DMI characteristics is less consistent with observations, however, five models reproduce similar correlations to those observed between the DMI and East African short rains (SON). In the future, there are no clear inter-model patterns of rainfall or DMI behaviour. In this sample of models four (two) out of six simulate modest increases (decreases) in annual rainfall by the 2080s. For SON, three of the six models indicate a trend towards increasingly positive phase of the DMI, two indicate a decrease and one shows no substantial change. Citation: Conway, D., C. E.Hanson, R. Doherty, and A. Persechino (2007), GCM simulations of the Indian Ocean dipole influence on East African rainfall: Present and future, Geophys. Res. Lett., 34, L03705,
This paper reviews current knowledge of the potential impacts of climate change on water resources in Africa and the possible limits, barriers or opportunities for adaptation to climate change in internationally-shared river basins. Africa faces significant challenges to water resources management in the form of high variability and regional scarcity, set within the context of generally weak institutional capacity. Management is further challenged by the transboundary nature of many of its river basins. Climate change, despite uncertainty about the detail of its impacts on water resources, is likely to exacerbate many of these challenges. River basins, and the riparian states that share them, differ in their capacities to adapt. Without appropriate cooperation adaptation may be limited and uneven. Further research to examine the factors and processes that are important for cooperation to lead to positive adaptation outcomes and the increased adaptive capacity of water management institutions is suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.