Many polyphenols that contain more than two phenolic hydroxyl groups are natural antioxidants and can provide health benefits to humans. These polyphenols include, for example, oleuropein, hydroxytyrosol, catechin, chlorogenic acids, hesperidin, nobiletin, and isoflavones. These have been studied widely because of their strong radical-scavenging and antioxidative effects. These effects may contribute to the prevention of diseases, such as diabetes. Insulin secretion, insulin resistance, and homeostasis are important factors in the onset of diabetes, a disease that is associated with dysfunction of pancreatic β-cells. Oxidative stress is thought to contribute to this dysfunction and the effects of antioxidants on the pathogenesis of diabetes have, therefore, been investigated. Here, we summarize the antioxidative effects of polyphenols from the perspective of their radical-scavenging activities as well as their effects on signal transduction pathways. We also describe the preventative effects of polyphenols on diabetes by referring to recent studies including those reported by us. Appropriate analytical approaches for evaluating antioxidants in studies on the prevention of diabetes are comprehensively reviewed.
Recently, the biological roles of lipid peroxidation products have received a great deal of attention not only for elucidating pathological mechanisms but also for practical clinical applications as biomarkers. In the last 50 years, lipid peroxidation has been the subject of extensive studies from the viewpoints of mechanisms, dynamics, product analysis, involvement in diseases, inhibition, and biological signaling. Lipid hydroperoxides are formed as major primary products, but they are substrates for various enzymes and they also undergo various secondary reactions. During this decade, hydroxyoctadecadienoic acid from linoleates, F2-isoprostanes from arachidonates, and neuroprostanes from docosahexanoates have been proposed as biomarkers for evaluating oxidative stress in vivo and its related diseases. The implications of lipid peroxidation products in vivo will be briefly reviewed and their practical applications will be discussed.
Breakthroughs in biochemistry have furthered our understanding of the onset and progression of various diseases, and have advanced the development of new therapeutics. Oxidative stress and reactive oxygen species (ROS) are ubiquitous in biological systems. ROS can be formed non-enzymatically by chemical, photochemical and electron transfer reactions, or as the byproducts of endogenous enzymatic reactions, phagocytosis, and inflammation. Imbalances in ROS homeostasis, caused by impairments in antioxidant enzymes or non-enzymatic antioxidant networks, increase oxidative stress, leading to the deleterious oxidation and chemical modification of biomacromolecules such as lipids, DNA, and proteins. While many ROS are intracellular signaling messengers and most products of oxidative metabolisms are beneficial for normal cellular function, the elevation of ROS levels by light, hyperglycemia, peroxisomes, and certain enzymes causes oxidative stress-sensitive signaling, toxicity, oncogenesis, neurodegenerative diseases, and diabetes. Although the underlying mechanisms of these diseases are manifold, oxidative stress caused by ROS is a major contributing factor in their onset. This review summarizes the relationship between ROS and oxidative stress, with special reference to recent advancements in the detection of biomarkers related to oxidative stress. Further, we will introduce biomarkers for the early detection of neurodegenerative diseases and diabetes, with a focus on our recent work.
A relationship between type 2 diabetes mellitus (T2DM) and intestinal flora has been suggested since development of analysis technology for intestinal flora. An animal model of T2DM is important for investigation of T2DM. Although there are some animal models of T2DM, a comparison of the intestinal flora of healthy animals with that of T2DM animals has not yet been reported. The intestinal flora of Tsumura Suzuki Obese Diabetes (TSOD) mice was compared with that of Tsumura, Suzuki, Non Obesity (TSNO) mice in the present study. The TSOD mice showed typical type 2 diabetes symptoms, which were high-fat diet-independent. The TSOD and the TSNO mouse models were derived from the same strain, ddY. In this study, we compared the intestinal flora of TSOD mice with that if TSNO mice at 5 and 12 weeks of age. We determined that that the number of operational taxonomic units (OTUs) was significantly higher in the cecum of TSOD mice than in that of TSNO mice. The intestinal flora of the cecum and that of the feces were similar between the TSNO and the TSOD strains. The dominant bacteria in the cecum and feces were of the phyla Firmicutes and Bacteroidetes. However, the content of some bacterial species varied between the two strains. The percentage of Lactobacillus spp. within the general intestinal flora was higher in TSOD mice than in TSNO mice. In contrast, the percentages of order Bacteroidales and family Lachnospiraceae were higher in TSNO mice than in TSOD mice. Some species were observed only in TSOD mice, such as genera Turicibacter and SMB53 (family Clostridiaceae), the percentage of which were 3.8% and 2.0%, respectively. Although further analysis of the metabolism of the individual bacteria in the intestinal flora is essential, genera Turicibacter and SMB53 may be important for the abnormal metabolism of type 2 diabetes.
Current diagnostic tests such as glycemic indicators have limitations for early detection of impaired glucose tolerance (IGT), which leads to diabetes. Oxidative stress induced by various oxidants in a random and destructive manner is considered to play an important role in the pathophysiology of a number of human disorders and diseases such as impaired glucose tolerance. We have developed an improved method for the measurement of in vivo lipid peroxidation, where the presence of 8-iso-prostaglandin F2α (8-iso-PGF2α), hydroxyoctadecadienoic acids (HODEs), hydroxyeicosatetraenoic acids (HETEs), and 7-hydroxycholesterol (7-OHCh), as well as their parent molecules, linoleic acid (LA) and cholesterol (Ch), was determined by performing LC-MS/MS (for 8-iso-PGF2α, HODE, and HETE) and GC-MS (for 7-OHCh, LA, and Ch) after reduction with triphenyl phosphine and saponification by potassium hydroxide. We then applied this method to volunteers (n = 57), including normal type (n = 43), “high-normal” (fasting plasma glucose, 100–109 mg/dL, n = 7), pre-diabetic type (IGT, n = 5), and diabetic type (n = 2) subjects who are diagnosed by performing oral glucose tolerance tests (OGTTs). Several biomarkers in plasma, such as insulin, leptin, adiponectin, interleukin-6, tumor necrosis factor-α, high sensitivity-C-reactive protein, HbA1c, and glucose levels were measured during OGTT. We found that the fasting levels of (10- and 12-(Z,E)- HODE)/LA increased significantly with increasing levels of HbA1c and glucose during OGTT and with insulin secretion and resistance index. In conclusion, 10- and 12-(Z,E)-HODE may be prominent biomarkers for the early detection of IGT and “high-normal” type without OGTT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.