Gastrointestinal microbiota have been implicated in the pathogenesis of various gastrointestinal disorders in dogs, including acute diarrhea and chronic enteropathy. Metronidazole and prednisolone are commonly prescribed for the treatment of these diseases; however, their effects on gastrointestinal microbiota have not been investigated. The objective of this study was to evaluate the effects of these drugs on the gastrointestinal microbiota of dogs. Metronidazole was administered twice daily at 12.5 mg/kg to a group of five healthy dogs, and prednisolone at 1.0 mg/kg daily to a second group of five healthy dogs for 14 days. Fecal samples were collected before and after administration (day 0 and 14), and 14 and 28 days after cessation (day 28 and 42). DNA was extracted, and the bacterial diversity and composition of each sample were determined based on 16S ribosomal RNA (rRNA) gene sequences using next-generation sequencing (Illumina MiSeq). In the group administered metronidazole, bacterial diversity indices significantly decreased at day 14, and recovered after the cessation. Principal coordinates analysis and hierarchical dendrogram construction based on unweighted and weighted UniFrac distance matrices revealed that bacterial composition was also significantly altered by metronidazole at day 14 compared with the other time points. The proportions of Bacteroidaceae, Clostridiaceae, Fusobacteriaceae, Lachnospiraceae, Ruminococcaceae, Turicibacteraceae, and Veillonellaceae decreased, while Bifidobacteriaceae, Enterobacteriaceae, Enterococcaceae, and Streptococcaceae increased at day 14 and returned to their initial proportions by day 42. Conversely, no effect of prednisolone was observed on either the bacterial diversity or composition. Reducing pathogenic bacteria such as Fusobacteria and increasing beneficial bacteria such as Bifidobacterium through the administration of metronidazole may be beneficial for promoting gastrointestinal health; however, further investigations into the effects on diseased dogs are needed.
Bifidobacterium longum subsp. longum represents one of the most prevalent bifidobacterial species in the infant, adult and elderly (human) gut. In the current study, we performed a comparative genome analysis involving 145 B. longum representatives, including 113 B. longum subsp. longum strains obtained from healthy Japanese subjects aged between 0 and 98 years. Although MCL clustering did not reveal any correlation between isolated strains and subject age, certain characteristics appear to be more prevalent among strains corresponding to specific host ages, such as genes involved in carbohydrate metabolism and environmental response. Remarkably, a substantial number of strains appeared to have been transmitted across family members, a phenomenon that was shown not to be confined to mother-infant pairs. This suggests that the ubiquitous distribution of B. longum subsp. longum across the human lifespan is at least partly due to extensive transmission between relatives. Our findings form a foundation for future research aimed at unraveling the mechanisms that allow B. longum strains to successfully transfer between human hosts, where they then colonize and persist in the gut environment throughout the host’s lifespan.
SummaryCleistogamy is an efficient strategy for preventing gene flow from genetically modified (GM) crops. We identified a cleistogamous mutant of rice harbouring a missense mutation (the 45th residue isoleucine to threonine; I45T) in the class-B MADS-box gene SUPERWOMAN1 ( SPW1 ), which specifies the identities of lodicules (equivalent to petals) and stamens. In the mutant, spw1-cls , the stamens are normal, but the lodicules are transformed homeotically to lodicule-glume mosaic organs, thereby engendering cleistogamy. Since this mutation does not affect other agronomic traits, it can be used in crosses to produce transgenic lines that do not cause environmental perturbation. Molecular analysis revealed that the reduced heterodimerization ability of SPW1I45T with its counterpart class-B proteins OsMADS2 and OsMADS4 caused altered lodicule identity. spw1-cls is the first useful mutant for practical gene containment in GM rice. Cleistogamy is possible in many cereals by engineering class-B floral homeotic genes and thereby inducing lodicule identity changes.
Aim Recent studies have suggested that oral bacteria induce systemic inflammation through the alteration of gut microbiota. We examined the relationship between oral and gut microbiota to evaluate the transition of oral bacteria to the gastrointestinal tract. Methods Oral samples from subgingival plaque and tongue‐coating and fecal samples were collected from 29 elderly subjects (age, 80.2 ± 9.1 years) and 30 adults (age, 35.9 ± 5.0 years). Genomic DNA was extracted from all samples, and DNA sequencing of bacterial 16S rRNA genes was performed for microbiota analysis. UniFrac distances were calculated to evaluate the similarity between microbial communities. Results Unweighted UniFrac distance indicated that the elderly group had a higher similarity between fecal and subgingival plaque microbiota than the adult group. Indeed, some bacterial taxa found in oral samples had a significantly higher prevalence in the feces of the elderly group than in that of the adult group. Conclusions The prevalence of oral bacterial transition to gut may be higher in the elderly than in adults, expecting that oral health care in the elderly will affect their gut microbiota composition and consequently promote human health.
Although alteration of commensal microbiota is associated with chronic gastrointestinal (GI) diseases such as inflammatory bowel disease (IBD) in dogs, the microbiota composition in intestinal lymphoma, an important differential diagnosis of canine IBD, has not been investigated. The objective of this study was to compare the fecal microbiota in dogs with IBD, dogs with intestinal lymphoma, and healthy dogs. Eight dogs with IBD, eight dogs with intestinal lymphoma, and fifteen healthy dogs were included in the study. Fecal samples were analyzed by 16S rRNA gene next-generation sequencing. Rarefaction analysis failed to reveal any difference in bacterial diversity among healthy dogs and diseased dogs. Based on PCoA plots of unweighted UniFrac distances, the bacterial composition in dogs with intestinal lymphoma was different from those observed in dogs with IBD and healthy dogs. When compared with healthy dogs, intestinal lymphoma subjects showed significant increases in organisms belonging to the Eubacteriaceae family. The proportion of the family Paraprevotellaceae and the genus Porphyromonas was significantly higher in dogs with IBD compared to healthy dogs. These observations suggest that dysbiosis is associated with intestinal lymphoma as well as IBD in dogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.