We investigate some solitary wave results of time fractional evolution equations. By employing the extended rational exp((-ψ ψ)(η))-expansion method, a few different results including kink, singular-kink, multiple soliton, and periodic wave solutions are formally generated. It is worth mentioning that the solutions obtained are more general with more parameters. The exact solutions are constructed in the form of exponential, trigonometric, rational, and hyperbolic functions. With the choice of proper values of parameters, graphs to some of the obtained solutions are drawn. On comparing some special cases, our solutions are in good agreement with the results published previously and the remaining are new.
In this paper, we extensively studied a mathematical model of biology. It helps us to understand the dynamical procedure of population changes in biological population model and provides valuable predictions. In this model, we establish a variety of exact solutions. To study the exact solutions, we used a fractional complex transform to convert the particular partial differential equation of fractional order into corresponding partial differential equation and modified exp-function method is implemented to investigate the nonlinear equation. Graphical demonstrations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, unfailing, well-organized and pragmatic for fractional PDEs and could be protracted to further physical happenings.
In this study, we establish exact solutions of fractional Kawahara equation by using the idea of -expansion method. The results of different studies show that the method is very effective and can be used as an alternative for finding exact solutions of nonlinear evolution equations (NLEEs) in mathematical physics. The solitary wave solutions are expressed by the hyperbolic, trigonometric, exponential and rational functions. Graphical representations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, expedient for fractional PDEs, and could be extended to other physical problems.
This research work presents a compact design of a Multiple-Input Multiple-Output (MIMO) multiband antenna along with high-isolation characteristics. The presented antenna was designed for 3.50 GHz, 5.50 GHz, and 6.50 GHz frequencies for 5G cellular, 5G WiFi, and WiFi-6, respectively. The fabrication of the aforementioned design was undertaken using FR-4 (1.6 mm thickness) substrate material with a loss tangent and relative permittivity of about 0.025 and 4.30, respectively. The two-element MIMO multiband antenna was miniaturized to 16 × 28 × 1.6 mm3, making it desirable for devices operating in 5G bands. High isolation (>15 dB) was attained with thorough testing without employing a decoupling scheme in the design. Laboratory measurements resulted in a peak gain of 3.49 dBi and an efficiency of around 80% in the entire operating band. The evaluation of the presented MIMO multiband antenna was carried out in terms of the envelope correlation coefficient (ECC), diversity gain (DG), total active reflection coefficient (TARC), and Channel Capacity Loss (CCL). The measured ECC was less than 0.04, and the DG was well above 9.50. The observed TARC was also lower than −10 dB, and the CCL was below 0.4 bits/s/Hz in the entire operating band. The presented MIMO multiband antenna was analyzed and simulated using CST Studio Suite 2020.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.