Computational Auditory Scene Analysis (CASA) has been the focus in recent literature for speech separation from monaural mixtures. The performance of current CASA systems on voiced speech separation strictly depends on the robustness of the algorithm used for pitch frequency estimation. We propose a new system that estimates pitch (frequency) range of a target utterance and separates voiced portions of target speech. The algorithm, first, estimates the pitch range of target speech in each frame of data in the modulation frequency domain, and then, uses the estimated pitch range for segregating the target speech. The method of pitch range estimation is based on an onset and offset algorithm. Speech separation is performed by filtering the mixture signal with a mask extracted from the modulation spectrogram. A systematic evaluation shows that the proposed system extracts the majority of target speech signal with minimal interference and outperforms previous systems in both pitch extraction and voiced speech separation.
Abstract-Computational Auditory Scene Analysis (CASA) has attracted a lot of interest in segregating speech from monaural mixtures. In this paper, we propose a new method for single channel speech separation with frame-based pitch range estimation in modulation frequency domain. This range is estimated in each frame of modulation spectrum of speech by analyzing onsets and offsets. In the proposed method, target speaker is separated from interfering speaker by filtering the mixture signal with a mask extracted from the modulation spectrogram of mixture signal. Systematic evaluation shows an acceptable level of separation comparing with classic methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.