In this paper, a new chaotic system is introduced. The proposed system is a conventional power network that demonstrates a chaotic behavior under special operating conditions. Some features such as Lyapunov exponents and a strange attractor show the chaotic behavior of the system, which decreases the system performance. Two different controllers are proposed to control the chaotic system. The first one is a nonlinear conventional controller that is simple and easy to construct, but the second one is developed based on the finite time control theory and optimized for faster control. A MATLAB-based simulation verifies the results.
Nonlinear singular systems present a general mathematical framework for the modeling and controlling of complicated systems, however the complex nature of this type of systems causes many difficulties in control strategy. In this paper, a model reference control approach is addressed for nonlinear affine singular systems. First, a basic control system is proposed based on the Lyapunov stability theorem so that nonlinear singular system can asymptotically track the desired linear reference model. After that, in the second design, it has been considered that systems' parameters are unknown and two adaptive approaches are investigated. For better illustration, simulation has been done and the results show the tracking performance for both presented control systems.
Since in most robot applications the desired paths are determined in task space or Cartesian space, it is important to control the robot arm in task space. In this paper a fuzzy controller with modifiable scaling factors is proposed to control the robot end-effector in task space. The controller is a fuzzy system with a mechanism to change the scaling factors when the error is bounded under a predetermined value. The controller is designed in joint space and is developed to work space by using inverse Jacobian strategy. The simulations results on Puma 560 robot manipulator illustrate the high performance of presented control method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.