Toure ´and Hall Scheme 6. Synthesis of trans-Jasmonic Acid Using a Noyori-type 3CR, by Yamamoto and Co-workers 23 Scheme 7. Synthesis of Indanomycin Using a Noyori-type 3CR, by Burke and Co-workers 25 Scheme 8. Synthesis of Incarvilline and Incarvine Using a Noyori 3CR, by Kibayashi and Co-workers 26,28
Using reverse transcriptase-PCR and degenerate oligonucleotides derived from the active-site residues of subtilisin͞kexin-like serine proteinases, we have identified a highly conserved and phylogenetically ancestral human, rat, and mouse type I membrane-bound proteinase called subtilisin͞kexin-isozyme-1 (SKI-1). Computer databank searches reveal that human SKI-1 was cloned previously but with no identified function. In situ hybridization demonstrates that SKI-1 mRNA is present in most tissues and cells. Cleavage specificity studies show that SKI-1 generates a 28-kDa product from the 32-kDa brain-derived neurotrophic factor precursor, cleaving at an RGLT2SL bond. In the endoplasmic reticulum of either LoVo or HK293 cells, proSKI-1 is processed into two membrane-bound forms of SKI-1 (120 and 106 kDa) differing by the nature of their N-glycosylation. Late along the secretory pathway some of the membrane-bound enzyme is shed into the medium as a 98-kDa form. Immunocytochemical analysis of stably transfected HK293 cells shows that SKI-1 is present in the Golgi apparatus and within small punctate structures reminiscent of endosomes. In vitro studies suggest that SKI-1 is a Ca 2؉ -dependent serine proteinase exhibiting a wide pH optimum for cleavage of pro-brainderived neurotrophic factor.
Tankyrase 1 and 2 have been shown to be redundant, druggable nodes in the Wnt pathway. As such, there has been intense interest in developing agents suitable for modulating the Wnt pathway in vivo by targeting this enzyme pair. By utilizing a combination of structure-based design and LipE-based structure efficiency relationships, the core of XAV939 was optimized into a more stable, more efficient, but less potent dihydropyran motif 7. This core was combined with elements of screening hits 2, 19, and 33 and resulted in highly potent, selective tankyrase inhibitors that are novel three pocket binders. NVP-TNKS656 (43) was identified as an orally active antagonist of Wnt pathway activity in the MMTV-Wnt1 mouse xenograft model. With an enthalpy-driven thermodynamic signature of binding, highly favorable physicochemical properties, and high lipophilic efficiency, NVP-TNKS656 is a novel tankyrase inhibitor that is well suited for further in vivo validation studies.
Imidazoles are an important group of the azole family of heterocycles frequently found in pharmaceuticals, drug candidates, ligands for transition metal catalysts, and other molecular functional materials. Owing to their wide application in academia and industry, new methods and strategies for the generation of functionalized imidazole derivatives are in demand. We here describe a general and comprehensive approach for the synthesis of complex aryl imidazoles, where all three C–H bonds of the imidazole core can be arylated in a regioselective and sequential manner. We report new catalytic methods for selective C5- and C2-arylation of SEM-imidazoles and provide a mechanistic hypothesis for the observed positional selectivity based on electronic properties of C–H bonds and the heterocyclic ring. Importantly, aryl bromides and low-cost aryl chlorides can be used as arene donors under practical laboratory conditions. To circumvent the low reactivity of the C-4 position, we developed the SEM-switch that transfers the SEM-group from N-1 to N-3 nitrogen and thus enables preparation of 4-arylimidazoles and sequential C4–C5-arylation of the imidazole core. Furthermore, selective N3-alkylation followed by the SEM-group deprotection (trans-N-alkylation) allows for regioselective N-alkylation of complex imidazoles. The sequential C-arylation enabled by the SEM-switch allowed us to produce a variety of mono-, di-, and triarylimidazoles using diverse bromo- and chloroarenes. Using our approach, the synthesis of individual compounds or libraries of analogues can begin from either the parent imidazole or a substituted imidazole, providing rapid access to complex imidazole structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.