The mitochondrial D-loop hypervariable segment 1 (mt HVS1) between nucleotides 15997 and 16377 has been examined in aboriginal Australian people from the Darling River region of New South Wales (riverine) and from Yuendumu in central Australia (desert). Forty-seven unique HVS1 types were identified, varying at 49 nucleotide positions. Pairwise analysis by calculation of BEPPI (between population proportion index) reveals statistically significant structure in the populations, although some identical HVS1 types are seen in the two contrasting regions. mt HVS1 types may reflect more-ancient distributions than do linguistic diversity and other culturally distinguishing attributes. Comparison with sequences from five published global studies reveals that these Australians demonstrate greatest divergence from some Africans, least from Papua New Guinea highlanders, and only slightly more from some Pacific groups (Indonesian, Asian, Samoan, and coastal Papua New Guinea), although the HVS1 types vary at different nucleotide sites. Construction of a median network, displaying three main groups, suggests that several hypervariable nucleotide sites within the HVS1 are likely to have undergone mutation independently, making phylogenetic comparison with global samples by conventional methods difficult. Specific nucleotide-site variants are major separators in median networks constructed from Australian HVS1 types alone and for one global selection. The distribution of these, requiring extended study, suggests that they may be signatures of different groups of prehistoric colonizers into Australia, for which the time of colonization remains elusive.
Recent work on the Neandertal genome has raised the possibility of admixture between Neandertals and the expanding population of Homo sapiens who left Africa between 80 and 50 Kya (thousand years ago) to colonize the rest of the world. Here, we provide evidence of a notable presence (9% overall) of a Neandertal-derived X chromosome segment among all contemporary human populations outside Africa. Our analysis of 6,092 X-chromosomes from all inhabited continents supports earlier contentions that a mosaic of lineages of different time depths and different geographic provenance could have contributed to the genetic constitution of modern humans. It indicates a very early admixture between expanding African migrants and Neandertals prior to or very early on the route of the out-of-Africa expansion that led to the successful colonization of the planet.
Mannose-binding lectin (MBL) is an important complement-activating protein of the human innate immune system. Deficiency of MBL is associated with an increased risk of various infections and arises from three structural gene mutations in exon 1 (variants B, C and D) and/or the presence of a low efficiency promoter. The C allele is found in sub-Saharan Africa whereas the B allele is found elsewhere, suggesting that these mutations occurred after the suggested hominid migration out of Africa [100-150 000 years before present (BP)]. Paradoxically, these alleles may have a selective advantage in protection against intracellular pathogens and occur at particularly high frequencies in sub-Saharan Africa (C variant) and South America (B variant). Since hominids reached Australia at least 50 000 years ago, a study of MBL polymorphisms in the indigenous population was of interest. Using heteroduplex technology we found a paucity of MBL structural gene mutations in two population groups from geographically distinct regions. Of 293 individuals tested, 289 were wild-type and four were heterozygous for either the B or D allele. In each individual with an MBL mutation the HLA haplotype profile suggested some Caucasian admixture. We also found a restricted range of MBL promoter haplotypes and the serum MBL levels were higher than those of any other ethnic group studied to date (median 3.07 microg/ml). Our data suggest that the B mutation probably arose between 50 000 and 20 000 BP. Its absence from the founder gene pool of indigenous Australians may also partly explain their vulnerability to intracellular infections such as tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.