Abstract-Poor illumination, less background contrast and blurring effects makes the medical, satellite and camera images difficult to visualize. Image fusion plays the vital role to enhance image quality by resolving the above issues and reducing the image quantity. The combination of spatial and spectral technique Discrete Wavelet Transform and Principal Component Analysis (DWT-PCA) decrease processing time and reduce number of dimensions but down sampling causes lack of shift invariance that results in poor quality final fused image. At first this work uses combined median and average filter that eliminates noise in the image which is caused by illumination, camera circuitry and sensor at preprocessing stage. Then, hybrid Stationary Wavelet Transform and Principal Component Analysis (SWT-PCA) technique is implemented to increase output image accuracy by eliminating down sampling and is not influenced by artifacts and blurring effects. Further, it can overcome the trade-off of Heisenberg's uncertainty principle by improving accuracy in both domains, time (spatial) as well as frequency (spectral). The proposed combined median and average filter with hybrid SWT-PCA algorithm measures quality parameters, such as peak signal to noise ratio (PSNR), mean squared error (MSE) and normalized cross correlation (NCC) and improved results depict the superiority of the algorithm than existing techniques.
Functional and anatomical information extraction from Magnetic Resonance Images (MRI) is important in medical image applications. The information extraction is highly influenced by the artifacts in the MRI images. The feature extraction involves the segmentation of MRI images. We present
a MRI image segmentation using Bat Optimization Algorithm (BOA) with Fuzzy C Means (FCM) clustering. Echolocation of bats is utilized in Bat Optimization Algorithm. The proposed segmentation technique is evaluated with existing segmentation techniques. Results of experimentation shows that
proposed segmentation technique outperforms existing methods and produces 98.5% better results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.