Abstract. On board the four Cluster spacecraft, the Cluster Ion Spectrometry (CIS) experiment measures the full, threedimensional ion distribution of the major magnetospheric ions (H + , He + , He ++ , and O + ) from the thermal energies to about 40 keV/e. The experiment consists of two different instruments: a COmposition and DIstribution Function analyser (CIS1/CODIF), giving the mass per charge composition with medium (22.5 • ) angular resolution, and a Hot Ion AnalCorrespondence to: H. Rème (Henri.Reme@cesr.fr) yser (CIS2/HIA), which does not offer mass resolution but has a better angular resolution (5.6 • ) that is adequate for ion beam and solar wind measurements. Each analyser has two different sensitivities in order to increase the dynamic range.
Magnetic reconnection is a fundamental physical process in plasmas whereby stored 40 magnetic energy is converted into heat and kinetic energy of charged particles. 41Reconnection occurs in many astrophysical plasma environments and in laboratory 42 plasmas. Using very high time resolution measurements, NASA's Magnetospheric 43 2 Multiscale Mission (MMS) has found direct evidence for electron demagnetization and 44 acceleration at sites along the sunward boundary of Earth's magnetosphere where the 45 interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) 46 observed the conversion of magnetic energy to particle energy, (ii) measured the electric 47 field and current, which together cause the dissipation of magnetic energy, and (iii) 48identified the electron population that carries the current as a result of demagnetization 49 and acceleration within the reconnection diffusion/dissipation region. 50 51 Introduction 52
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.
One Sentence Summary: NASA's Magnetospheric Multiscale mission detected fast magnetic reconnection and high-speed electron jets in the Earth's magnetotail.Abstract: Magnetic reconnection is an energy conversion process important in many astrophysical contexts including the Earth's magnetosphere, where the process can be investigated in-situ. Here we present the first encounter of a reconnection site by NASA's Magnetospheric Multiscale (MMS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.