This paper pioneers the identification of artificial intelligence (AI) enablers like technology feasibility, sophistication, data integrity, interoperability and perceived benefits that can boost operational efficiency of firms in Indian food processing industry. With the food processing industry contributing significantly to domestic gross value added and generating an export earning of close to USD 40 billion from agricultural and processed food exports, the study examines the role of AI in overcoming the existing inefficiencies of firms, particularly the small and medium enterprises (SMEs) involved in food processing. For this, questionnaire was circulated to 500 respondents comprising of IT and supply chain professionals, managers of food processing companies and academicians working in this domain, of which 341 complete responses were received. These responses were then analysed using PLS-SEM modeling, through which the relationship between AI adoption and operational efficiency of firm was established. The study found a significant relationship between AI adoption and operational efficiency. The R square and Q square values substantiate the predictive power of the model used in the study. The research has significant implications for supply chain professionals as technology adoption would boost resilience, integration and transparency of these firms. The study is also relevant for addressing issues pertaining to food security, ________________________________ Vranda Jain -Assistant Professor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.