The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml(-1) concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol, methanol or DMSO. Consequently, obtained results show that the method of selection is extremely important and will influence the results. Thus, broth microdilution and reduction percentage methods can be recommended as reliable and useful screening methods for determination of antimicrobial activity of PLGA nanoparticle formulations used particularly in drug delivery systems compared to both agar well and disk diffusion methods.
This study aimed to synthesize and characterize juglone-entrapped poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles and compare the antifungal properties of free juglone with its PLGA nanoparticle formulation for the first time. The juglone-loaded nanoparticles prepared using the oil-in-water (o/w) single-emulsion solvent evaporation method were characterized by the reaction yield (RY), encapsulation efficiency (EE), polydispersity index (PDI), particle size, zeta potential (ZP), FT-IR, and in vitro release properties and evaluated for their morphological features using SEM. The nanoparticle formulation had size, RY, ZP, EE, and PDI values of 212 nm, 66.91 ± 2.4%, -16.3 ± 0.7 mV, 70.66 ± 3.1%, and 0.083 ± 0.024, respectively. In vitro release showed a triphasic pattern with initial burst followed by sustained release and dormant phase over the study period, releasing about 72.8% in total after 42 days. The antifungal studies against Aspergillus flavus, Candida albicans, and Fusarium spp. using agar dilution and top agar dilution methods indicated that the juglone-encapsulated nanoparticle was more effective than free juglone. This study showed that the top agar method, which was applied for the first time on antifungal activity, is more suitable for the nanoparticular system based on sustained release. Therefore, PLGA nanoparticle formulations may be an important tool for application in many areas for the effective and beneficial use of hydrophobic compounds such as juglone.
The aim of this study was to evaluate anti-cancer properties of hesperetin (Hsp) and hesperetin-loaded poly(lactic-co-glycolic acid) nanoparticles (HspNPs) for glioblastoma treatment. Nanoparticles prepared by single emulsion method had a size of less than 300 nm with 70.7 ± 3.9% reaction yield and 26.4 ± 1.1% Hsp loading capacity. Treatment of C6 glioma cells with HspNPs for 24 and 48 h resulted in dose-and time-dependent decrease in cell viability, with approximate IC 50 of 28 and 21 lg/mL, respectively (p ¼ .036 for 24 h, p ¼ .025 for 48 h). The percentage of PCNA positive cells decreased to 20% and 10%, respectively, for Hsp-and HspNP-treated cells at concentration of 100 mg/mL. Treatment with increasing concentrations of HspNPs (25, 50, 75 and 100 mg/mL) resulted in 9.1-, 7-, 12.5-and 12.7-fold in increase in apoptotic cell number. Optimum doses of Hsp and HspNPs were found to increase oxidative damage in C6 glioma cells. MDA levels, an indicator of lipid peroxidation, were found to be significantly elevated at 75 and 100 mg/mL exposure concentration of HspNPs with (p ¼ .002) and (p ¼ .018), respectively for 48-h treatment. The results obtained with this study showed biocompatible polymeric nanoparticle systems has great advantages to enhance anti-cancer activity and poor solubility of therapeutic agents. Overall our findings suggest that Hsp-loaded PLGA nanoparticle systems showed significant anti-cancer activity and HspNPs could be used as promising novel anti-cancer agent. ARTICLE HISTORY
The use of nanoparticle formulations of juglone in biological systems and applications could be more beneficial than its free form due to its toxicity.
The use of quercetin as a bioflavonoid is becoming increasingly common in food industries even though poor water solubility, instability, absorption, and permeability have limited its application. The oil-in-water single-emulsion solvent evaporation method to synthesize highly stable and soluble quercetin-encapsulated nanoparticles (NPs), in which the reaction yield, particle size, and polydispersity of the NPs are varied greatly within the process parameters of the synthesis method, has been optimized. NPs with different initial quercetin amounts were used to determine how the quercetin amount affected nanoparticle properties and antimicrobial efficiency. Listeria monocytogenes, Salmonella typhimurium, Escherichia coli, and Staphylococcus aureus were chosen as model bacteria due to their being foodborne pathogens. The results of antimicrobial activity evaluated by three different methods showed that the antimicrobial activity of both quercetin NPs and free quercetin was effective on gram-positive strains (L. monocytogenes and S. aureus). Additionally, it was detected that Q31 NPs have more effective antimicrobial activity than other synthesized quercetin nanoparticles depending on the amount of substance and release. Furthermore, on the basis of assessing the antibacterial effects by scanning electron microscopy, it was detected that bacteria cells lost their integrity and became pale with the release of cytoplasm and decomposed after treatment with Q31 NPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.