Compliance checking for clinical pathways (CPs) is getting increasing attention in health-care organizations due to stricter requirements for cost control and treatment excellence. Many compliance measures have been proposed for treatment behavior inspection in CPs. However, most of them look at aggregated data seen from an external perspective, e.g. length of stay, cost, infection rate, etc., which may provide only a posterior impression of the overall conformance with the established CPs such that in-depth and in near real time checking on the compliance of the essential/critical treatment behaviors of CPs is limited. CP specification and support online compliance checking, this article presents a semantic rule-based CP compliance checking system. In detail, we construct a CP ontology (CPO) model to provide a formal grounding of CP compliance checking. Using the proposed CPO, domain treatment constraints are modeled into Semantic Web Rule Language (SWRL) rules to specify the underlying treatment behaviors and their quantified temporal structure in a CP. The established SWRL rules are integrated with the CP workflow such that a series of applicable compliance checking and evaluation can be reminded and recommended during the pathway execution. The proposed approach can, therefore, provides a comprehensive compliance checking service as a paralleling activity to the patient treatment journey of a CP rather than an afterthought. The proposed approach is illustrated with a case study on the unstable angina clinical pathway implemented in the Cardiology Department of a Chinese hospital. The results demonstrate that the approach, as a feasible solution to provide near real time conformance checking of CPs, not only enables clinicians to uncover non-compliant treatment behaviors, but also empowers clinicians with the capability to make informed decisions when dealing with treatment compliance violations in the pathway execution.
Background Hemorrhage is a potential and serious adverse drug reaction, especially for geriatric patients with long-term administration of rivaroxaban. It is essential to establish an effective model for predicting bleeding events, which could improve the safety of rivaroxaban use in clinical practice. Methods The hemorrhage information of 798 geriatric patients (over the age of 70 years) who needed long-term administration of rivaroxaban for anticoagulation therapy was constantly tracked and recorded through a well-established clinical follow-up system. Relying on the 27 collected clinical indicators of these patients, conventional logistic regression analysis, random forest and XGBoost-based machine learning approaches were applied to analyze the hemorrhagic risk factors and establish the corresponding prediction models. Furthermore, the performance of the models was tested and compared by the area under curve (AUC) of the receiver operating characteristic (ROC) curve. Results A total of 112 patients (14.0%) had bleeding adverse events after treatment with rivaroxaban for more than 3 months. Among them, 96 patients had gastrointestinal and intracranial hemorrhage during treatment, which accounted for 83.18% of the total hemorrhagic events. The logistic regression, random forest and XGBoost models were established with AUCs of 0.679, 0.672 and 0.776, respectively. The XGBoost model showed the best predictive performance in terms of discrimination, accuracy and calibration among all the models. Conclusion An XGBoost-based model with good discrimination and accuracy was built to predict the hemorrhage risk of rivaroxaban, which will facilitate individualized treatment for geriatric patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.