Acute lung injury (ALI) is a complication of severe acute pancreatitis (SAP). Sitagliptin (SIT) is a DPP4 inhibitor that exerts anti-inflammatory and antioxidant effects; however, its mechanism of action in SAP-ALI remains unclear. In this study, we investigated the effects of SIT on SAP-ALI and the specific pathways involved in SAP-induced lung inflammation, including oxidative stress, autophagy, and p62–Kelch-like ECH-associated protein 1 (Keap1)–NF-E2-related factor 2 (Nrf2) signalling pathways. Nrf2 knockout (Nrf2−/−) and wild-type (WT) mice were pre-treated with SIT (100 mg/kg), followed by caerulein and lipopolysaccharide (LPS) administration to induce pancreatic and lung injury. BEAS-2B cells were transfected with siRNA-Nrf2 and treated with LPS, and the changes in inflammation, reactive oxygen species (ROS) levels, and autophagy were measured. SIT reduced histological damage, oedema, and myeloperoxidase activity in the lung, decreased the expression of pro-inflammatory cytokines, and inhibited excessive autophagy and ROS production via the activation of the p62–Keap1–Nrf2 signalling pathway and promotion of the nuclear translocation of Nrf2. In Nrf2-knockout mice, the anti-inflammatory effect of SIT was reduced, resulting in ROS accumulation and excessive autophagy. In BEAS-2B cells, LPS induced ROS production and activated autophagy, further enhanced by Nrf2 knockdown. This study demonstrates that SIT reduces SAP-ALI-associated oxidative stress and excessive autophagy through the p62–Keap1–Nrf2 signalling pathway and nuclear translocation of Nrf2, suggesting its therapeutic potential in SAP-ALI.
In the nerve roots of vertebrates, the peripheral nervous system (PNS) and central nervous system (CNS) interface at the PNS-CNS transitional zone (PCTZ), which consists of cell boundaries with various myelin components. We have recently shown that the mouse cochlear nerve presents an exceptionally long segment of the CNS tissue extending into the PNS using light microscopy. However, it is unclear how oligodendrocytes and Schwann cells contribute to the formation of myelin components of the PCTZ. It is undetermined how myelination is initiated along the cochlear nerve, and when it adopts a mature pattern. In this study, immunofluorescence using antibodies specific to oligodendrocyte marker myelin oligodendrocyte glycoprotein (MOG) and Schwann cell marker myelin protein zero (MPZ) were used to detail the expression of myelin components along the postnatal mouse cochlear nerve. We found that the expression of MPZ was initially observed in the soma of bipolar spiral ganglion neurons at postnatal day 0 (P0) and progressed to the central and peripheral processes after P8–P10. Myelination of the CNS tissue was initiated in close proximity to the PCTZ from P7 to P8 and then extended centrally. Myelination of the PCTZ reached a mature style at P14, when the interface of the expression of MOG and MPZ was clearly identified along the cochlear nerve. This knowledge of PCTZ formation of the cochlear nerve will be essential to future myelination research, and it will also gain clinical interest because of its relevance to the degeneration and regeneration of the auditory pathway in hearing impairment.
T cell Ig and ITIM domain (TIGIT) is a newly identified inhibitory receptor expressed on T and natural killer (NK) cells. Cytokine-induced killer (CIK) cells express CD3 and CD56 molecules, and share functional properties with both NK and T cells. However, it remains unknown whether TIGIT is expressed in CIK cells. Here, we show that TIGIT is expressed by CIK cells and interacts with CD155. By blocking TIGIT using an anti-TIGIT functional antibody, we demonstrate that CIK cells display increased proliferation; higher cytotoxic targeting of tumor cells expressing CD155; and higher expression of interferon-γ (IFN-γ), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Furthermore, increases in IFN-γ and cytotoxicity by blockade of TIGIT were reduced by blocking DNAX accessory molecule-1 (DNAM-1) signaling, implying that TIGIT exerts immunosuppressive effects by competing with DNAM-1 for the same ligand, CD155. Our results provide evidence that blockade of TIGIT may be a novel strategy to improve the cytotoxic activity of CIK cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.