A capillary electrophoresis (CE) microsystem, based on the combination of microphotolithographically fabricated separation chips and thick-film electrochemical detector strips, is described. The microsystem consists of a planar screen-printed carbon line electrode mounted perpendicular to the flow direction. Such coupling obviates the need for permanent attachment of the detector, to allow easy and fast replacement of the working electrode. Variables influencing the separation efficiency and amperometric response, including the channel-electrode spacing, separation voltage, or detection potential, are assessed and optimized. The versatility, simplicity, and low-cost advantages of the new design are coupled to an attractive performance, with submicromolar detection limits, and good precision. Applicability for assays of mixtures of nitroaromatic explosives or catecholamines is demonstrated. Such use of screen-printed detectors should also benefit conventional CE systems, particularly in applications requiring a frequent replacement of the working electrode.
A micromachined capillary electrophoresis chip is described for simultaneous measurements of glucose, ascorbic acid, acetaminophen, and uric acid. Fluid control is used to mix the sample and enzyme glucose oxidase (GOx). The enzymatic reaction, a catalyzed aerobic oxidation of glucose to gluconic acid and hydrogen peroxide, occurs along the separation channel. The enzymatically liberated neutral peroxide species is separated electrophoretically from the anionic uric and ascorbic acids in the separation/reaction channel. The three oxidizable species are detected at the downstream gold-coated thick-film amperometric detector at different migration times. Glucose can be detected within less than 100 s, and detection of all electroactive constituents is carried out within 4 min. Measurements of glucose in the presence of acetaminophen, a neutral compound, are accomplished by comparing the responses in the presence and absence of GOx in the running buffer. The reproducibility of the on-chip glucose measurements is improved greatly by using uric acid as an internal standard. Factors influencing the performance, including the GOx concentration, field strength, and detection potential, are optimized. Such coupling of enzymatic assays with electrophoretic separations on a microchip platform holds great promise for rapid testing of metabolites (such as glucose or lactate), as well as for the introduction of high-speed clinical microanalyzers based on multichannel chips.
An on-chip electrochemical detector for micromachined capillary electrophoresis (CE) systems, based on sputtering a gold working electrode directly onto the capillary outlet, is described. The new on-chip detector preparation requires no microfabrication or alignment procedures nor a decoupling mechanism. The attractive performance of the integrated electrophoresis chips/amperometric detection was demonstrated for the anodic detection of neurotransmitters. The response for dopamine was linear from 20 to 200 μM, with a LOD of 1.0 μM and a sensitivity of 52 pA/μM. Such intimate coupling of capillary electrophoresis chips and electrochemical detection facilitates the realization of complete integrated microanalytical devices.
Glass microchips, integrating chemical derivatization reactions, electrophoretic separations, and amperometric detection, have been developed. The performance of the new integrated microfabricated devices is demonstrated for rapid on-chip measurements of amino acids utilizing precolumn reactions of amino acids with o-phthaldialdehyde/2-mercaptoethanol to generate electroactive derivatives that are separated electrophoretically and detected at the end-column electrochemical detector. The influence of the sample/reagent mixing ratio, reagent concentrations, driving voltage, detection potential, and other variables is explored. The integrated microsystem offers a rapid (6 min) simultaneous measurements of eight amino acids, down to approximately 2.5 x 10(-6) M (5 fmol) level, with linearity up to the 2 x 10(-4) M level examined, and good reproducibility (RSD = 2.2-2.7%). A step of the driving voltage is used for decreasing the migration time of late-eluting components and reducing the overall analysis time. The integrated microfabricated device expands the scope of on-chip electrochemical detection to nonelectroactive analytes and holds promise of being a powerful analytical tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.