Abstract. This paper aims at improving the mechanical behavior of biobased brittle amorphous polylactide (PLA) by extrusion melt-blending with biobased semi-crystalline polyamide 11 (PA11) and addition of halloysite nanotubes (HNT). The morphological analysis of the PLA/PA11/HNT blends shows a strong interface between the two polymeric phases due to hydrogen bonding, and the migration of HNTs towards PA11 phase inducing their selective localization in one of the polymeric phases of the blend. A 'salami-like' structure is formed revealing a HNTs-rich tubular-like (fibrillar) PA11 phase. Moreover, HNTs localized in the dispersed phase act as nucleating agents for PA11. Compared to neat PLA, this leads to a remarkable improvement in tensile and impact properties (elongation at break is multiplied by a factor 43, impact strength by 2, whereas tensile strength and stiffness are almost unchanged). The toughening mechanism is discussed based on the combined effect of resistance to crack propagation and nanotubes load bearing capacity due to the existence of the fibrillar structure. Thus, blending brittle PLA with PA11 and HNT nanotubes results in tailor-made PLA-based compounds with enhanced ductility without sacrificing stiffness and strength.
Water-blown bio-based thermoplastic polyurethane (TPU) formulations were developed to fulfill the requirements of the reactive rotational molding/foaming process. They were prepared using synthetic and bio-based chain extenders. Foams were prepared by stirring polyether polyol (macrodiol), chain extender (diol), surfactant (silicone oil), chemical blowing agent (distilled water), catalyst, and diisocyanate. The concentration of chain extender, blowing agent, and surfactant were varied and their effects on foaming kinetics, physical, mechanical, and morphological properties of foams were investigated. Density, compressive strength, and modulus of foams decrease with increasing blowing agent concentration and increase with increasing chain extender concentration, but are not significantly affected by changes in surfactant concentration. The foam glass-transition temperatures increase with increasing blowing agent and chain extender concentrations. The foam cell size slightly increases with increasing blowing agent content and decreases upon surfactant addition (without any dependence on concentration), whereas chain extender concentration has no effect on cell size. Bio-based 1,3-propanediol can be used successfully for the preparation TPU foams without sacrificing any properties.
PA6 nanocomposite films with different nanoclay dispersion degrees are prepared by melt compounding and cast extrusion. The dispersion of the MMT platelets (homogeneity and degree of exfoliation) is evaluated qualitatively by TEM and quantitatively by rheology and NMR; it ranges from microcomposites to highly exfoliated nanocomposites. Compared to neat PA6, the optical properties (clarity, gloss, haze) are worse for the microcomposites and better for the nanocomposites. The mechanical properties depend strongly on the exfoliation level. Better exfoliation leads to higher stiffness. The strain at break decreases compared to neat PA6 films even in the case of highly exfoliated nanocomposites films. At low MMT content, the microcomposite has a higher ductility than well exfoliated nanocomposites films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.