Human monocytes are a heterogeneous cell population, which can be divided into a classical (CD14++CD16−), a non-classical (CD14+CD16+), and an intermediate (CD14++CD16+) subset. We hypothesized that low-grade inflammation may differentially affect monocyte subsets. We used a human lipopolysaccharide (LPS) infusion model to mimic low-grade inflammation to identify, which monocyte subsets are preferentially activated under these conditions. Monocyte subsets were identified by staining for CD14 and CD16, activation status of monocytes was analyzed by staining for CD11b and a novel in situ mRNA hybridization approach to detect IL-6 and IL-8 specific mRNA at the single-cell level by flow cytometry. After LPS challenge, cell numbers of monocyte subsets dropped after 2 h with cell numbers recovering after 6 h. Distribution of monocyte subsets was skewed dramatically towards the intermediate subset after 24 h. Furthermore, intermediate monocytes displayed the largest increase of CD11b expression after 2 h. Finally, IL-6 and IL-8 mRNA levels increased in intermediate and non-classical monocytes after 6 h whereas these mRNA levels in classical monocytes changed only marginally. In conclusion, our data indicates that the main responding subset of monocytes to standardized low-grade inflammation induced by LPS in humans is the CD14++CD16+ intermediate subset followed by the CD14+CD16+ non-classical monocyte subset. Circulating classical monocytes showed comparably less reaction to LPS challenge in vivo.
The purpose of our pilot study was to evaluate the effects of a companion animal (dog) on physiologic arousal and behavioral distress among children undergoing a dental procedure. A repeated measures experimental design was used to study 40 children between the ages of 7 and 11 years who were undergoing procedures in a pediatric dental clinic. Half the children had the dog present during the procedure and half did not. Data were obtained before, during, and after the procedure. Behavioral distress was measured using the Observational Scale of Behavioral Distress; procedures were videotaped. Physiologic arousal was measured using a YSI telethermometer taped to the child's index finger. Student's t-test and repeated measures analysis of variance were used to answer the research question. No significant differences in behavioral distress or physiologic arousal were found between experimental and control groups. Further analysis revealed that for children who initially verbalized distress on arrival at the clinic, the presence of the dog decreased physiologic arousal during the time the child was on the dental table waiting for the dentist to arrive. Further research should be conducted to verify the effect of a companion animal on initial stress experienced by children for whom the visit to the dentist is most stressful.
The protease-activated receptor-1 (PAR-1) is critically involved in the co-activation of coagulation and inflammatory responses. Vorapaxar is a reversible, orally active, low molecular weight, competitive antagonist of PAR-1.We investigated the effects of PAR-1 inhibition by vorapaxar on the inflammatory response, the activation of coagulation, fibrinolysis and endothelium during experimental endotoxemia. In this randomized, double blind, crossover trial, 16 healthy volunteers received a bolus infusion of 2 ng/kg lipopolysaccharide (LPS) ± placebo/vorapaxar with a washout period of 8 weeks. Vorapaxar dosing was guided by thrombin receptor-activating peptide-6-induced whole blood aggregometry. Participants received 10 mg vorapaxar or placebo as an initial dose and, depending on the aggregometry, potentially an additional 10 mg. Goal was > 80% inhibition of aggregation compared with baseline. Vorapaxar significantly reduced the LPS-induced increase in pro-thrombin fragments F1 + 2 by a median of 27% (quartiles: 11-49%), thrombin-anti-thrombin concentrations by 22% (-3 to 46%) and plasmin-anti-plasmin levels by 38% (23-53%). PAR-1 inhibition dampened peak concentrations of tumour necrosis factor -α, interleukin-6 and consequently C-reactive protein by 66% (-11-71%), 50% (15-79%) and 23% (16-38%), respectively. Vorapaxar decreased maximum von Willebrand factor levels by 29% (26-51%) and soluble E-selectin concentrations by 30% (25-38%) after LPS infusion. PAR-1 inhibition did not affect thrombomodulin, soluble P-selectin and platelet factor-4 concentrations.PAR-1 inhibition significantly reduced the activation of coagulation, fibrinolysis, the inflammatory response and endothelial activation during experimental human endotoxemia.
Cardiovascular disease is a global scourge to society, with novel therapeutic approaches required in order to alleviate the suffering caused by sustained cardiac damage. MicroRNAs (miRNAs) are being touted as one such approach in the fight against heart disease, acting as possible post-transcriptional molecular triggers responsible for invoking cardiac regeneration. To further ones understanding of miRNAs and cardiac regeneration, it is prudent to learn from organisms that can intrinsically regenerate their hearts following injury. Using the red-spotted newt, an adult chordate capable of cardiac regeneration, we decided to delve deeper into the role miRNAs play during this process. RNA isolated from regenerating newt heart samples, was used in a microarray screen, to identify significantly expressed candidate miRNAs during newt cardiac regeneration. We performed quantitative qPCR analysis on several conserved miRNAs and found one in particular, miR-128, to be significantly elevated when cardiac hyperplasia is at its peak following injury. In-situ hybridisation techniques revealed a localised expression pattern for miR-128 in the cardiomyocytes and non-cardiomyocytes in close proximity to the regeneration zone and in vivo knockdown studies revealed a regulatory role for miR-128 in proliferating non-cardiomyocyte populations and extracellular matrix deposition. Finally, 3'UTR reporter assays revealed Islet1 as a biological target for miR-128, which was confirmed further through in vivo Islet1 transcriptional and translational expression analysis in regenerating newt hearts. From these studies we conclude that miR-128 regulates both cardiac hyperplasia and Islet1 expression during newt heart regeneration and that this information could be translated into future mammalian cardiac studies.
Membrane-bound plasmin is used by immune cells to degrade extracellular matrices, which facilitates migration. The plasminogen receptor Plg-RKT is expressed by immune cells, including monocytes and macrophages. Among monocytes and macrophages, distinct subsets can be distinguished based on cell surface markers and pathophysiological function. We investigated expression of Plg-RKT by monocyte and macrophage subsets and whether potential differential expression might have functional consequences for cell migration. Proinflammatory CD14++CD16+ human monocytes and Ly6Chigh mouse monocytes expressed the highest levels of Plg-RKT and bound significantly more plasminogen compared with the other respective subsets. Proinflammatory human macrophages, generated by polarization with lipopolysaccharide and interferon-γ, showed significantly higher expression of Plg-RKT compared with alternatively activated macrophages, polarized with interleukin-4 and interleukin-13. Directional migration of proinflammatory monocytes was plasmin dependent and was abolished by anti–Plg-RKT monoclonal antibody, ε-amino-caproic acid, aprotinin, and the aminoterminal fragment of urokinase-type plasminogen activator. In an in vivo peritonitis model, significantly less Ly6Chigh monocyte recruitment was observed in Plg-RKT−/− compared with Plg-RKT+/+ mice. Immunohistochemical analysis of human carotid plaques and adipose tissue showed that proinflammatory macrophages also exhibited high levels of Plg-RKT in vivo. Our data demonstrate higher expression of Plg-RKT on proinflammatory monocyte and macrophage subsets that impacts their migratory capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.