BackgroundBesides the pathological states, diabetes mellitus may also alter the hepatic biotransformation of pharmaceutical agents. It is advantageous to understand the effect of diabetes on the pharmacokinetic of drugs. The objective of this study was to define the pharmacokinetic changes of tramadol and its main metabolites after in vivo intraperitoneal administration and ex vivo perfused liver study in diabetic rat model.Tramadol (10 mg/kg) was administered to rats (diabetic and control groups of six) intraperitoneally and blood samples were collected at different time points up to 300 min. In a parallel study, isolated liver perfusion was done (in diabetic and control rats) by Krebs-Henseleit buffer (containing 500 ng/ml tramadol). Perfusate samples were collected at 10 min intervals up to 180 min. Concentration of tramadol and its metabolites were determined by HPLC.ResultsTramadol reached higher concentrations after i.p. injection in diabetics (Cmax of 1607.5 ± 335.9 ng/ml) compared with control group (Cmax of 561.6 ± 111.4). M1 plasma concentrations were also higher in diabetic rats compared with control group. M2 showed also higher concentrations in diabetic rats. Comparing the concentration levels of M1 in diabetic and control perfused livers, showed that in contrast to intact animals, the metabolic ratios of M1 and M5 (M/T) were significantly higher in diabetic perfused liver compared to those of control group.ConclusionsThe pharmacokinetic of tramadol and its three metabolites are influenced by diabetes. As far as M1 is produced by Cyp2D6, its higher concentration in diabetic rats could be a result of induction in Cyp2D6 activity, while higher concentrations of tramadol can be explained by lower volume of distribution.
BackgroundFormic acid (formate) is the main reason for toxicity and death through methanol poisoning. The simultaneous determination of methanol, ethanol, and formate in the body can help to discover the cause of death and is useful in the diagnosis of acute methanol poisoning. The measurement of formate is not yet available in Iran. With regard to the increasing rate of methanol poisoning and its related mortality in Iran, as well as the main role of formate in methanol poisoning, this study was designed to set up an analytical method for the concurrent determination of ethanol, methanol, and formate.MethodsFollowing the modification of a previously developed gas chromatography method, vitreous and blood samples of 43 postmortem cases with a history of methanol intoxication were collected over a period of 2 years at the Legal Medicine Organization of Mashhad. Thereafter, ethanol, methanol, and formate concentrations were measured by headspace GC/FID. Formate esterification was performed by the methylation of formate with sulfuric acid and methanol. In order to confirm the esterification method for the production of methyl formate, we used gas chromatography with a mass detector (GC/MS) because of its higher sensitivity and accuracy. Furthermore, the correlations between formate and methanol concentrations in blood and vitreous samples, and between formate and methanol were investigated.ResultsA significant relationship was found only between methanol concentrations in blood and vitreous samples (P < 0.03).ConclusionsIn postmortems, with the passage of time since alcohol ingestion, the measurement of only methanol concentration cannot determine the degree of toxicity or the cause of death. Therefore, using the present analytical method and measurement of formic acid, we can estimate the degree of toxicity and cause of death.
Background: Curcumin, a bioactive component with multiple characteristics, has been shown to have many therapeutic effects. However, there are several limitations regarding the use of curcumin such as instability, low solubility, poor bioavailability, and rapid elimination. Different approaches have been used to solve these problems. Materials and methods: In this study, surface-modified nanosuspension (NS) is investigated as a novel brain delivery system. Two different methods were used for the preparation of nanosuspensions with two different stabilizers. The surface of the nanosuspensions was coated with D-α-tocopheryl polyethylene glycol 1,000 succinate (TPGS) and Tween 80 using physical adsorption. Curcumin NSs were prepared using two different top-down techniques by high-pressure homogenizer and probe sonicator. A validated sensitive and selective high-performance liquid chromatography method using fluorescence detection was used for the determination and quantification of curcumin. Pharmacokinetics and biodistribution of curcumin NSs and solutions after intravenous administration in rats were studied. Results: Higher levels of curcumin in the brain were detected when Tween 80-coated NS was used compared with the curcumin solution and TPGS coated NS (TPGS-NS) ( P -value<0.05). Absorption of ApoE and/or B by Tween 80-coated nanoparticles (NPs) from the blood were caused transferring of these NPs into the brain using receptor-mediated endocytosis. Distribution of TPGS-NS in the brain compared with the curcumin solution was higher ( P -value<0.05). Higher levels of curcumin concentration in the liver, spleen, and lung were also observed with TPGS-NS. Conclusion: The results of this study indicate that the surface-coating of NSs by Tween 80 may be used to improve the biodistribution of curcumin in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.